Skip to main content

An Improved Particle Swarm Optimization with Dynamic Scale-Free Network for Detecting Multi-omics Features

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10847))

Included in the following conference series:

Abstract

Along with the rapid development of high-throughput sequencing technology, a large amount of multi-omics data sets are generated, which provide more opportunities to understand the mechanism of complex diseases. In this study, an improved particle swarm optimization with dynamic scale-free network, named DSFPSO, is proposed for detecting multi-omics features. The highlights of DSFPSO are the introduced scale-free network and velocity updating strategies. The scale-free network is employed to DSFPSO as its population structure, which can dynamically adjust the iteration processes. Three types of velocity updating strategies are used in DSFPSO for fully considering the heterogeneity of particles and their neighbors. Both gene function analysis and pathway analysis on colorectal cancer (CRC) data show that DSFPSO can detect CRC-associated features effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bersanelli, M., Mosca, E., Remondini, D., et al.: Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinformatics 17(2), S15 (2016)

    Article  Google Scholar 

  2. Roth, V.: The generalized LASSO: a wrapper approach to gene selection for microarray data. Sekretariat für Forschungsberichte, Inst. für Informatik III (2002)

    Google Scholar 

  3. Liu, J.X., Gao, Y.L., Xu, Y., et al.: Differential expression analysis on RNA-Seq count data based on penalized matrix decomposition. IEEE Trans. Nanobiosci. 13(1), 12–18 (2014)

    Article  Google Scholar 

  4. Luss, R., d’Aspremont, A.: Clustering and feature selection using sparse principal component analysis. Optim. Eng. 11(1), 145–157 (2010)

    Article  MathSciNet  Google Scholar 

  5. Zhang, W., Shang, J., Li, H., Sun, Y., Liu, J.X.: SIPSO: Selectively Informed Particle Swarm Optimization Based on Mutual Information to Determine SNP-SNP Interactions. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2016. LNCS, vol. 9771, pp. 112–121. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42291-6_11

    Chapter  Google Scholar 

  6. Chuang, L.Y., Chang, H.W., Tu, C.J., et al.: Improved binary PSO for feature selection using gene expression data. Comput. Biol. Chem. 32(1), 29–38 (2008)

    Article  Google Scholar 

  7. Kar, S., Sharma, K.D., Maitra, M.: Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique. Expert Syst. Appl. 42(1), 612–627 (2015)

    Article  Google Scholar 

  8. He, R.: An improved particle swarm optimization based on self-adaptive escape velocity. J. Softw. 16(12), 2036–2044 (2005)

    Article  Google Scholar 

  9. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on evolutionary computation 2002 CEC 2002, vol. 2, pp. 1671–1676. IEEE (2002)

    Google Scholar 

  10. Liu, C., Du, W.B., Wang, W.X.: Particle swarm optimization with scale-free interactions. PLoS ONE 9(5), e97822 (2014)

    Article  Google Scholar 

  11. Gao, Y., Du, W., Yan, G.: Selectively-informed particle swarm optimization. Sci. Rep. 5, 9295 (2015)

    Article  Google Scholar 

  12. Zhao, S.Z., Liang, J.J., Suganthan, P.N., et al.: Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization. In: IEEE Congress on 2008 Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 3845–3852. IEEE (2008)

    Google Scholar 

  13. Shi, Y.: Particle swarm optimization: developments, applications and resources evolutionary computation. In: Proceedings of the 2001 Congress on 2001, vol. 1, pp. 81–86. IEEE (2001)

    Google Scholar 

  14. Shang, J., Sun, Y., Li, S., et al.: An improved opposition-based learning particle swarm optimization for the detection of SNP-SNP interactions. Biomed Res. Int. 2015, 524821 (2015)

    Google Scholar 

  15. Liu, J.X., Gao, Y.L., Zheng, C.H., et al.: Block-constraint robust principal component analysis and its application to integrated analysis of TCGA data. IEEE Trans. Nanobiosci. 15(6), 510–516 (2016)

    Article  Google Scholar 

  16. Lee, H.J., Flaherty, P., Ji, H.P.: Systematic genomic identification of colorectal cancer genes delineating advanced from early clinical stage and metastasis. BMC Med. Genomics 6(1), 1 (2013)

    Article  Google Scholar 

  17. Kanehisa, M., Araki, M., Goto, S., et al.: KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36(suppl_1), D480–D484 (2007)

    Article  Google Scholar 

  18. Li, N., Bu, X., Tian, X., et al.: Fatty acid synthase regulates proliferation and migration of colorectal cancer cells via HER2-PI3 K/Akt signaling pathway. Nutr. Cancer 64(6), 864–870 (2012)

    Article  Google Scholar 

  19. Josse, C., Bouznad, N., Geurts, P., et al.: Identification of a microRNA landscape targeting the PI3 K/Akt signaling pathway in inflammation-induced colorectal carcinogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 306(3), G229–G243 (2014)

    Article  Google Scholar 

  20. Zhang, Y., Gan, B., Liu, D., et al.: FoxO family members in cancer. Cancer Biol. Ther. 12(4), 253–259 (2011)

    Article  Google Scholar 

  21. De Mattos, S.F., Villalonga, P., Clardy, J., et al.: FOXO3a mediates the cytotoxic effects of cisplatin in colon cancer cells. Mol. Cancer Ther. 7(10), 3237–3246 (2008)

    Article  Google Scholar 

  22. Mees, S.T., Mennigen, R., Spieker, T., et al.: Expression of tight and adherens junction proteins in ulcerative colitis associated colorectal carcinoma: upregulation of claudin-1, claudin-3, claudin-4, and β-catenin. Int. J. Colorectal Dis. 24(4), 361–368 (2009)

    Article  Google Scholar 

  23. Webb, E.L., Rudd, M.F., Sellick, G.S., et al.: Search for low penetrance alleles for colorectal cancer through a scan of 1467 non-synonymous SNPs in 2575 cases and 2707 controls with validation by kin-cohort analysis of 14 704 first-degree relatives. Hum. Mol. Genet. 15(21), 3263–3271 (2006)

    Article  Google Scholar 

  24. Zhang, R., Song, C.: Loss of CSMD1 or 2 may contribute to the poor prognosis of colorectal cancer patients. Tumor Biol. 35(5), 4419–4423 (2014)

    Article  Google Scholar 

  25. Gong, J., Tian, J., Lou, J., et al.: A polymorphic MYC response element in KBTBD11 influences colorectal cancer risk, especially in interaction with a MYC regulated SNP rs6983267. Ann. Oncol. 29(3), 632–639 (2018)

    Article  Google Scholar 

  26. Kawasaki, T., Ohnishi, M., Suemoto, Y., et al.: WRN promoter methylation possibly connects mucinous differentiation, microsatellite instability and CpG island methylator phenotype in colorectal cancer. Mod. Pathol. 21(2), 150 (2008)

    Article  Google Scholar 

  27. Liu, Y.L., Gao, X., Jiang, Y., et al.: Expression and clinicopathological significance of EED, SUZ12 and EZH2 mRNA in colorectal cancer. J. Cancer Res. Clin. Oncol. 141(4), 661–669 (2015)

    Article  Google Scholar 

  28. Da Costa, L.T., He, T.C., Yu, J., et al.: CDX2 is mutated in a colorectal cancer with normal APC/β-catenin signaling. Oncogene 18(35), 5010 (1999)

    Article  Google Scholar 

  29. Brabletz, T., Spaderna, S., Kolb, J., et al.: Down-regulation of the homeodomain factor Cdx2 in colorectal cancer by collagen type I: an active role for the tumor environment in malignant tumor progression. Cancer Res. 64(19), 6973–6977 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61502272, 61572284); Project of Shandong Province Higher Educational Science and Technology Program (J18KA373); the Scientific Research Foundation of Qufu Normal University (BSQD20130119); the Science and Technology Planning Project of Qufu Normal University (xkj201524).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng-Jun Li or Junliang Shang .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Li, SJ., Shang, J., Liu, JX., Zheng, CH. (2018). An Improved Particle Swarm Optimization with Dynamic Scale-Free Network for Detecting Multi-omics Features. In: Zhang, F., Cai, Z., Skums, P., Zhang, S. (eds) Bioinformatics Research and Applications. ISBRA 2018. Lecture Notes in Computer Science(), vol 10847. Springer, Cham. https://doi.org/10.1007/978-3-319-94968-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94968-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94967-3

  • Online ISBN: 978-3-319-94968-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics