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Abstract. Cyber-Physical Systems (CPS) are systems controlled by
one or more computer-based components tightly integrated with a set
of physical components, typically described as sensors and actuators,
that can either be directly attached to the computer components, or
at a remote location, and accessible through a network connection. The
modeling and verification of such systems is a hard task and error prone
that require rigorous techniques. Hybrid automata is a formalism that
extends finite-state automata with continuous behavior, described by
ordinary differential equations. This paper uses a rewriting logic-based
technique to model and validate CPS, thus exploring the use of a formal
technique to develop such systems that combines expressive specifica-
tion with efficient state-based analysis. Moreover, we aim at the modular
specification of such systems such that each CPS component is indepen-
dently specified and the final system emerges as the synchronous product
of its constituent components. We model CPSs using Linear Hybrid Au-
tomaton and implement them in Real-Time Maude, a rewriting logic
tool for real-time systems. With this method, we develop a specification
for the n-reservoir problem, a CPS that controls a hose to fill a number
of reservoirs according to the physical properties of the hose and the
reservoirs.

1 Introduction

Cyber-Physical Systems (CPS) [2] are ever present in our daily life. They can
be intuitively described as systems that are controlled by one or more computer
based components tightly integrated with a set physical components, typically
described as sensors and actuators that can either be directly attached to the
computer components, or at a remote location and accessible through a network
connection.
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Most CPS have to cope with design requirements that are imposed onto
them by their multiple applications in the real world. Typically a CPS has to be
specified and tested against environments that require the system to:

– operate in real-time,
– realize reactive computations,
– leverage concurrent and distributed processing,
– deal with synchronization issues.

In [2], one of the major books on CPS in a vast (e.g. [3,4,10,15,17,24,26,27])
literature on the subject, Alur describes how Linear Hybrid Automata (LHA)
can be used for modeling CPS. In this context, the 2-reservoirs problem [17], a
text-book problem on dynamic systems where a control system needs to decide
to which of two tanks a hose needs to be moved given the reservoirs and hose’s
physical characteristics, is a CPS and therefore can be modeled as a LHA. In
this paper we generalize this problem to an arbitrary number of reservoirs, each
with their individual physical characteristics, and by adding latency to hose dis-
location. We model and analyze both the standard problem description and the
generalized version using Rewriting Logic [19], an expressive formalism for the
specification and verification of concurrent and distributed systems [22]. More-
over, we specify the n-reservoir system modularly as the synchronous product [5]
of its constituent components.

This paper contribution is manifold : (i) a precise definition of the syn-
chronous product of real-time rewrite systems, extending [18], (ii) a model of the
n-reservoir problem as an LHA, (iii) how to describe a CPS as a LHA in Rewrit-
ing Logic by representing its components, sensors, actuators and controllers, as
mathematical tuples denoting objects that communicate asynchronously, (iv) a
modular specification of the n-reservoir system, based on (i), and (v) its imple-
mentation and model checking in Real-Time Maude (RTM) [21], a Rewriting
Logic tool designed for the formal specification and analysis of real-time and
hybrid systems. This is a first-step in the development of a formal method and
its tooling to modularly specify and verify Cyber-Physical Systems based on its
Rewriting Logic semantics of the associated Linear Hybrid Automata.

The remainder of this paper is organized as follows. Section 2 describes foun-
dational requirements related to LHA and RTM. In Section 3, we discuss our
prototype implementation of the reservoir problem in RTM. Section 4 presents
the synchronous product of rewrite systems and its extension to real-time, to-
gether with the modular specification of the 2-reservoir problem. Section 5 de-
scribes related work. Section 6 concludes this paper describing the insights and
future research based on our findings.

2 Preliminaries

In oder to develop the implementation of the n-reservoirs problem and its model
check through the use of Linear Hybrid Automaton and Real-Time Maude an
understanding of what they are is required. This section provides a basic intro-
duction of these topics.
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2.1 Linear Hybrid Automaton (LHA)

A LHA is a Finite State Machine that is associated with a finite set of variables
that are described by ordinary differential equations (ODE). To guarantee that
the solutions of the differential equation are well defined, we assume that the
ODE are Lipschitz continuous [17]. Moreover, these differential equations are
such that any test and attribution within the model of the LHA are affine, that
is, a linear equation of the form a1x1 + a2x2 + ... + anxn ∼ 0 where ∼ is a
comparison operation that can be one of <,≤,=,≥ or > and an attribution is
in the form xi = ao + a1x1 + a2x2 + ... + anxn and a0, a1, ..., an are integer or
real constants.

A LHA HP consists of:

1. An asynchronous process P, where some of its state variables can be of type
cont, and appear only in affine tests and affine assignments in the guards
and updates of the tasks of P;

2. A continuous-time invariant CI, which is a Boolean expression over the state
variables S, where the variables are continuous (that is, of type cont) and
appear only in affine tests;

3. A rate constraint RC, which is a Boolean expression over the discrete state
variables and the derivatives of the continuously updated state variables that
appear only in affine tests.

Inputs, outputs, states, initial states, internal actions, input actions, and
output actions of the LHA HP are the same as that of the asynchronous process

P. Given a state s and a real-valued time δ > 0, s
δ−→ s + δr is a timed action

of HP, for a rate vector r consisting of a constant rx for every continuously
updated variable x if:

1. The expression RC is satisfied for every continuously updated variable x, the
derivative ẋ is assigned the value rx and every discrete variable x is assigned
the value s(x);

2. The state s+ tr satisfies the expression CI for all values 0 ≤ t ≤ δ.

As such, a LHA can be represented as an extended state machine as shown in
Figure 1, where the Initial Variables represent the starting values of all constants
and discrete variables in the LHA; State(i), i ∈ {1, 2}, represents one of the many
states in LHA together with tests and assignments that occur while the system is
evolving in time while not changing state; the arrow with a test and attribution
represents the boolean test that needs to be satisfied for the transition between
one state and another to happen, alongside any changes that must be assigned
to LHA variables.

2.2 Real-time rewrite systems and Real-Time Maude

A Rewriting Logic theory is essentially a triple (Σ,E,R) where Σ is a typed (or
sorted) signature (many sorted, order-sorted or membership equational, that is,
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State 1

Variables constraints
Assignments

State 2

Variables constraints
Assignments

Initialization Test Assignment

Fig. 1. Simple extended state machine diagram of a LHA

Rewriting Logic is parameterized by a choice of equational logic), E is a set of
Σ-equations and R is a set of Σ/E-rules where the terms being rewritten are
those in the initial Σ-algebra TΣ identified by Σ-equations E.

A real-time rewrite theory is a tuple R = (Σ,E ∪ A,R) [23], where: (i)
(Σ,E ∪ A) contains an equational subtheory (ΣTIME , ETIME ) ⊆ (Σ,E ∪ A),
satisfying the TIME axioms that specifies sort Time as the time domain (which
can be discrete or dense) and { } is a built-in constructor of sort GlobalSystem.
The rules in R are decomposed into: (i) instantaneous rewrite rules, that do not
act on the system as a whole, but only on some system components, and (ii)

tick rules that model the elapse of time in a system, having the form l : {t} u−→
{t′} if condition, where t and t′ are terms of sort System, u is a term of sort
Time denoting the duration of the rewrite. Given a real-time rewrite theory R,
a computation is a non-extensible sequence t0 −→ t1 −→ . . . −→ tn (that is, one
for which tn cannot be further rewritten) or an infinite sequence t0 −→ t1 −→ . . .
of one-step R-rewrites ti −→ ti + 1, with ti and ti + 1 ground terms, starting
with a given initial term t0 of sort System.

Maude [14] is a system/language that implements concurrent systems through
the use of equations and rewrite rules specified in one or more modules. Maude
itself has been extended through Full Maude, which is fully written in Maude
itself, to add several features to the system/language. These features include,
but are not limited to, object-oriented modules, module parameterization, and
n-tuple declaration.

Real-Time Maude (RTM) is an extension of Full Maude that includes the re-
quirements and tooling to model and check real-time systems. The time evolution
is achieved through tick rules that determine the effects of time in the system. As
such, RTM allows for a very granular control over how a system can evolve both
in time and instantaneously by means of two classes of rewrite rules that specify
either timed or discrete transitions. Although a timed module is parametric on
the time domain, Real-Time Maude provides some predefined modules specify-
ing useful time domains. For example, the modules NAT-TIME-DOMAIN-WITH-INF
and POSRAT-TIME-DOMAIN-WITH-INF define the time domain to be, respectively,
the natural numbers and the nonnegative rational numbers, and contain the sub-
sort declarations Nat < Time and Pos-Rat < Time. In Real-Time Maude, tick
rules, together with their durations, are specified using the syntax crl [l] :

{t} => {t’} in time u if condition.
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Essentially, an RTM specification representing a hybrid automaton H =
(S,→t,→d), with S the set of states of H, →t the set of timed transitions,
and →d the set of discrete transitions, is given by a structure (Σ,E,Rt, Rd)
where the equational specification (Σ,E) specifies the set S of states of the hy-
brid automaton H, Rt is the set of Σ/E-timed rewrite rules representing →t

transitions in H, and Rd the set of Σ/E-discrete rewrite rules representing →d

transitions in H.
We describe RTM specification language in Section 3, by example, while

describing the implementation of the 2-reservoir problem.

3 The reservoir problem in RTM

The 2-reservoir problem was presented by John Lygeros et al. in [17]. The prob-
lem has been fully defined in that work, alongside its differential equations and
its LHA.

Succinctly, the problem has as a pair of reservoirs that are flowing water out
of the system at a constant rate. Water is added to the system through a hose
that has a constant intake rate. The hose can be moved from one reservoir to
the other instantaneously. There is a control system that is designed to make
sure that the water level in each reservoir does not fall below a predefined level.
This can be seen in Figure 2.

Fig. 2. 2-reservoirs Diagram [17]

The LHA of the 2-reservoirs problem is described in Figure 3, where: xi is
the water level at the reservoir i (that is time dependent), ri is the flow of water
out of the reservoir i, qi is the state of the system with the hose filling reservoir
i, and w is the hose’s water flow rate.

The generalized n-reservoir problem is the extension of the 2-reservoirs problem
where the system has a finite non-predetermined number of reservoirs, each with
its own individual physical characteristics. In this new structure, the control
system has to make the decision to which reservoir it will move the hose to when
multiple reservoirs are potentially below the minimum water level threshold.
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q1
·
x1= w − v1
·
x2= −v2

x2 ≥ r2

q2
·
x1= −v1
·
x2= w − v2

x1 ≥ r1

x1 ≥ r1 ∧ x2 ≥ r2 x1 ≥ r1 ∧ x2 ≥ r2

x2 ≥ r2 x′ := x

x1 ≥ r1 x′ := x

Fig. 3. 2-reservoir LHA Diagram

Although the differential equations of each individual reservoir stay the same,
the total number of continuous variables that are tracked by the system scales
with the size of the instance (n continuous variables). Additionally, the number
of states in the LHA grows with the number of reservoirs as well (2n states).
Similarly, the problem will have a considerably larger number of state transitions.
These extra states and transitions force the control system to cope with a more
complex decision process to choose where to move the hose at any specific point
in time (n(n− 1) transitions).

We are now ready to inspect how the reservoirs problems can be implemented
in RTM with LHA in place and a clear understanding of the differences between
the simple (with 2 reservoirs) and the generalized versions of the reservoir prob-
lem.

3.1 The 2-reservoir problem in RTM

The states of the hybrid automaton modeling the 2-reservoir problem is defined
in RTM through a triple 〈{right , left},Q+,Q+〉 where {right , left} denotes the
hose position (either on the right or left reservoir) and Q+ is the set of positive
rational numbers denoting the height of the water column for each reservoir.

The triple and constants can be defined through the code below where key-
words op and ops declare operations for the left and right position of the hose,
the system configuration (that is, the triple 〈{right , left},Q+,Q+〉) and con-
stants for the hose flow rate w, each reservoir flow rate vi, and the water level on
each reservoir ri, with i ∈ {1, 2}, and NNegRat is the sort for Q+, respectively.

1 ops left right : −> Hose [ctor] .
2 op ‘, ‘, : Hose NNegRat NNegRat −> System [ctor] .
3 ops w v1 v2 r1 r2 : −> NNegRat .

Listing 1.1. Signature for the states of the 2-reservoir hybrid automaton

The movement of the hose can be represented by rules that change the system
configuration. Rule moveright moves the hose from left to right, while moveleft
goes the other way around. The rules are triggered when the water level of the
proper reservoir reaches the minimum acceptable level.
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1 vars x1 x2 : NNegRat .
2 crl [moveright] : left,x1,x2 => right,x1,x2 if x2 <= r2 .
3 crl [moveleft] : right,x1,x2 => left,x1,x2 if x1 <= r1 .

The last step is to create the rules specifying how water levels change in time,
the so called tick rules. The water levels increase in linear time by w − vi and
decreases, also in linear time, by vi.

1 var R : Time .
2 crl [tick−right] :
3 {right, x1, x2} => {right, x1 − (v1 ∗ R), x2 + ((w − v2) ∗ R)} in time R
4 if x1 > r1 [nonexec] .
5

6 crl [tick−left] :
7 {left, x1, x2} => {left, x1 + ((w − v1) ∗ R), x2 − (v2 ∗ R)} in time R
8 if x2 > r2 [nonexec] .

The evolution in time does not happen when the water level of the reservoir
with the hose is above the water threshold and the second reservoir is below or at
its water threshold. Without this restriction, the system can evolve to undesired
configurations where it keeps filing a reservoir that is above minimum threshold
while letting the other reservoir dry out.

3.2 The n-reservoir problem in RTM

The implementation of the n-reservoir problem requires a dynamic structure to
accommodate the run-time defined reservoir count. For that we leverage Maude’s
sets to create a System configuration made of a hose and each individual reservoir
as shown below.

1 { hose(10, 0) < 0 | thr: (15, 50), hth: 30, rte: 5 > < 1 | thr: (15, 50), hth: 30, rte: 5 > }

In this structure we have a hose element that has an in-take rate of 10 units
per time unit and it is positioned on top of reservoir 0. The hose is followed
by multiple structures in the form < 0 | thr: (15, 50), hth: 30, rte: 5 > that
represent a single reservoir with its unique identifier, the upper and lower water
thresholds, the current water level and the constant flow of water out of the
reservoir.

The hose is defined by:

1 sort Hose .
2 op hose : NNegRat Nat −> Hose [format(m! o)] .

A single reservoir, logically defined as < N | List of attributes >, can be
coded as:

1 subsort ReservoirAttribute < ReservoirAttributes .
2 op < | > : Nat ReservoirAttributes −> Reservoir [ctor format(b! o b! o b! o)] .
3 op ‘, : ReservoirAttributes ReservoirAttributes −> ReservoirAttributes [ctor assoc comm] .

Then the reservoir attributes are defined.

1 ∗∗∗ Upper and Lower Water thresholds
2 op thr: : NNegRat NNegRat −> ReservoirAttribute [ctor format(b! o)] .
3 ∗∗∗ Water Level
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4 op hth: : NNegRat −> ReservoirAttribute [ctor format(b! o b!)] .
5 ∗∗∗ Leak Rate
6 op rte: : NNegRat −> ReservoirAttribute [ctor format(b! o b!)] .

The whole system is put together by concatenating a Hose and as many
reservoirs as desired.

1 subsort Hose Reservoir < System .
2 op : System System −> System [ctor assoc comm] .

Keep in mind that in Maude, computations are identified with rewritings.
One of the distinguished features of Maude is to implement rewriting modulo
axioms, such as associativity and commutativity. Thus the use of definition of
many assoc and comm in the operators definition.

The next step is to define functions - done through operators in Maude -
to fill and drain the reservoirs alongside tests to validate that the evolution in
time can occur. First, a function to add water to the reservoir that the hose is
currently pointing to:

1 ∗∗∗ Vars used across the functions and rules
2 vars N M : Nat .
3 vars L U Ln Un Lm Um Xn Xm Dn Dm W : NNegRat .
4 var T : Time . var S : System .
5 vars RA RAn RAm : ReservoirAttributes .
6

7 op fill : Reservoir NNegRat NNegRat −> Reservoir .
8 eq fill(< N | thr: (L, U) , hth: Xn , rte: Dn >, W, T) =
9 < N | thr: (L, U), hth: (Xn + ((W − Dn) ∗ T)), rte: Dn > .

Next, a function that drains water from all reservoirs:

1 op drain : Reservoir NNegRat −> System .
2 eq drain(< N | thr: (L, U), hth: Xn, rte: Dn >, T) =
3 < N | thr: (L, U), hth: sd(Xn,(Dn ∗ T)), rte: Dn > .
4 eq drain(< N | thr: (L, U), hth: Xn, rte: Dn > S, T) =
5 < N | thr: (L, U), hth: sd(Xn,(Dn ∗ T)), rte: Dn > drain(S, T) .

and a test to identify if there is a reservoir that needs refill:

1 op refill? : System −> Bool .
2 ceq refill?(< N | thr: (L, U), hth: Xn, RAn >) = true if Xn <= L .
3 ceq refill?(< N | thr: (L, U), hth: Xn, RAn > S) = true if Xn <= L .
4 eq refill?(S) = false [owise] .

Next, the rules to control the movement of the hose and the evolution in time
must be defined. A single rule is capable of moving the hose from a reservoir
above the lower threshold to one that is below the lower threshold. If there is
no reservoir below the lower threshold, or the current reservoir is below the
threshold, the hose stays in the same place.

1 crl [move−hose] :
2 hose(W, N) < N | thr: (Ln, Un), hth: Xn, RAn >
3 < M | thr: (Lm, Um), hth: Xm, RAm > S =>
4 hose(W, M) < N | thr: (Ln, Un), hth: Xn, RAn >
5 < M | thr: (Lm, Um), hth: Xm, RAm > S
6 if (Xm <= Lm) and (N =/= M) and (Xn >= Ln) .

In rule move-hose, the configuration hose(10, 0) < 0 | thr: (15, 50),

hth: 40, rte: 5 > < 1 | thr: (15, 50), hth: 15, rte: 5 > changes to
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configuration hose(10, 1) < 0 | thr: (15, 50), hth: 40, rte: 5 > < 1

| thr: (15, 50), hth: 15, rte: 5 > as the reservoir 1 hth attribute value
is less or equal to the lower threshold defined in the thr attribute.

Once the system is in a configuration with no reservoir below the lower
threshold or if there is at least one reservoir that needs water and the hose is
placed on one of them, the system can evolve in time.

1 crl [tick] : {hose(W, N) < N | RAn > S} =>
2 {hose(W, N) fill(< N | RAn >, W, T) drain(S, T)} in time T
3 if not refill?(S) [nonexec] .

In this rule, the system hose(10, 1) < 0 | thr: (15, 50), hth: 40,

rte: 5 > < 1 | thr: (15, 50), hth: 15, rte: 5 > can evolve to hose(10,

1) < 0 | thr: (15, 50), hth: 30, rte: 5 > < 1 | thr: (15, 50), hth:

20, rte: 5 > while the system hose(10, 0) < 0 | thr: (15, 50), hth:

40, rte: 5 > < 1 | thr: (15, 50), hth: 15, rte: 5 > is not eligible to
evolve in time because there is a reservoir below the lower threshold, and the
hose is on a reservoir above the threshold.

Maude offers techniques to search for states that are reachable from the
initial states and match a given search pattern. To demonstrate this property,
we search the first six steps of the system evolution starting with initial state
given by < 0 | hth: 30, rte: 5, thr:(15,50)> < 1 | hth: 30, rte: 5,

thr:(15, 50)> < 2 | hth: 30, rte: 5, thr:(15,50)>.

1 Timed search in TEST
2 {init2} =>∗ {S:System}
3 in time < 5 and with mode default time increase 1 :
4

5 Solution 1
6 S:System −−> < 0 | hth: 30,rte: 5,thr:(15,50)> < 1 | hth: 30,rte: 5,thr:(15,
7 50)> < 2 | hth: 30,rte: 5,thr:(15,50)> hose(10,0); TIME ELAPSED:Time −−> 0
8

9 Solution 2
10 S:System −−> < 0 | hth: 35,rte: 5,thr:(15,50)> < 1 | hth: 25,rte: 5,thr:(15,
11 50)> < 2 | hth: 25,rte: 5,thr:(15,50)> hose(10,0); TIME ELAPSED:Time −−> 1
12

13 Solution 3
14 S:System −−> < 0 | hth: 40,rte: 5,thr:(15,50)> < 1 | hth: 20,rte: 5,thr:(15,
15 50)> < 2 | hth: 20,rte: 5,thr:(15,50)> hose(10,0); TIME ELAPSED:Time −−> 2
16

17 Solution 4
18 S:System −−> < 0 | hth: 45,rte: 5,thr:(15,50)> < 1 | hth: 15,rte: 5,thr:(15,
19 50)> < 2 | hth: 15,rte: 5,thr:(15,50)> hose(10,0); TIME ELAPSED:Time −−> 3
20

21 Solution 5
22 S:System −−> < 0 | hth: 45,rte: 5,thr:(15,50)> < 1 | hth: 15,rte: 5,thr:(15,
23 50)> < 2 | hth: 15,rte: 5,thr:(15,50)> hose(10,1); TIME ELAPSED:Time −−> 3
24

25 Solution 6
26 S:System −−> < 0 | hth: 45,rte: 5,thr:(15,50)> < 1 | hth: 15,rte: 5,thr:(15,
27 50)> < 2 | hth: 15,rte: 5,thr:(15,50)> hose(10,2); TIME ELAPSED:Time −−> 3
28

29 No more solutions

Next, in order to estimate RTM’s efficiency when executing in entry-level
computer devices, we executed a search looking for a specific system configura-
tion from the init2 configuration.
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1 Timed search in TEST
2 {init2} =>∗ {< 0 | hth: 45,RA0:ReservoirAttributes > < 1 | hth: 10,
3 RA1:ReservoirAttributes > < 2 | hth: 10,RA2:ReservoirAttributes >}
4 in time < 100 and with mode default time increase 1 :
5

6 No solution

In order to make sure we looked through the full state space, a state that the
system will not reach was selected, and as Table 1 demonstrates the whole process
took 10ms of processing and executed over 7, 000 rewritings to accomplish the
task.

Table 1. Evaluation of Search Technique in Maude

Test Time (in ms) Rewrites Rewrites/second

1 10 7978 730786
2 10 7029 692580

3.3 Model Checking

An RTM specification induces a timed automaton. Standard Maude model check-
ing techniques may be applied to validate timed Linear Temporal Logic formula
over a given timed automaton. This is achieved in RTM through a module ex-
tension that includes the TIMED-MODEL-CHECK module into the reservoir
problems implemented.

With the TIMED-MODEL-CHECK in a new RTM module, it is possible
to verify if the system evolves to a point where it has reservoirs that are below
the lower water threshold, and need the hose to be moved to - as a temporal
logic: |= t � ¬♦ one-down, where one-down represents the event of at least one
reservoir below the lower water threshold. The second test executed verified if, at
any point in time, all reservoirs need are below the lower treshold - as a temporal
logic proposition: |= t¬�♦macondo, where macondo represents the event of all
reservoirs reaching the lower threshold at any point in time.

If the system is well-formed - where
∑n
i=1 rtei = w - the checker should not

find a state where all reservoirs reach their low threshold or their upper threshold.
During the execution of such system up to n − 1 reservoirs could cross below
the low threshold. This behavior is achieved after the model check execution. It
can not find a solution where all reservoirs fall below the lower threshold; and it
produces a counter example when asked if we can identify a state where the the
water of a least one reservoir drops to or below the lower threshold.

1 Model check{init2} |=t ˜[]<> macondo in TEST in time <
2 5 with mode default time increase 1
3 Result Bool :
4 true
5

6 Model check{init2} |=t[]˜ <> one−down in TEST in time < 5
7 with mode default time increase 1

10



8 Result ModelCheckResult :
9 counterexample(

10 {{ < 0 | hth: 30,rte: 5,thr:(15,50)> < 1 | hth: 30,rte: 5,thr:(15,50)>
11 < 2 | hth: 30,rte: 5,thr:(15,50)> hose(10,0)} in time 0,’tick}
12 {{ < 0 | hth: 35,rte: 5,thr:(15,50)> < 1 | hth: 25,rte: 5,thr:(15,50)>
13 < 2 | hth: 25,rte: 5,thr:(15,50)> hose(10,0)} intime 1,’tick}
14 {{ < 0 | hth: 40,rte: 5,thr:(15,50)> < 1 | hth: 20,rte: 5,thr:(15,50)>
15 < 2 | hth: 20,rte: 5,thr:(15,50)> hose(10,0)} in time 2,’tick}
16 {{ < 0 | hth: 45,rte: 5,thr:(15,50)> < 1 | hth: 15,rte: 5,thr:(15,50)>
17 < 2 | hth: 15,rte: 5,thr:(15,50)> hose(10,0)} in time 3,’move−hose}
18 ,{{ < 0 | hth: 45,rte: 5,thr:(15,50)> < 1 | hth: 15,rte: 5,thr:(15,50)>
19 < 2 | hth: 15,rte: 5,thr:(15,50)> hose(10,1)} in time 3,’move−hose}
20 {{ < 0 | hth: 45,rte: 5,thr:(15,50)> < 1 | hth: 15,rte: 5,thr:(15,50)>
21 < 2 | hth: 15,rte: 5,thr:(15,50)> hose(10,2)} in time 3,’move−hose})

Table 2 demonstrates the amount of time required to complete the model
checking of the safety and liveness requirements for the system using the init2
configuration, with both proofs computed under 100 ms in an entry level x86
system, this indicates how efficient the rewriting system in RTM is at running
these LTL based model-checks.

Table 2. Model checking Evaluation

Test Time (in ms) Rewrites Rewrites/second

1 12 7074 570529
2 21 9580 443046

The RTM code for both the 2-reservoir and the n-reservoir modules and
the model checking can be retrieved from https://github.com/andremetelo/

CPSSources/tree/master/Reservoir.

3.4 Preliminary Analysis of LHA and RTM for CPS Design

A criteria to review a CPS design process has to turn the CPS characteristics
into key metrics in its evaluation. The control logic should be embedded in the
specification itself. The same should apply for sensors and actuators. Considering
that reactive computing and synchronization are intrinsic characteristics of a
CPS, the computing model process must naturally support and handle them.
Moreover, the time dependency of the differential equations are a constant that
has to be managed by the formalization process in order to generate a precise
model that represents the physical processes managed by the CPS.

The RTM code used in both variations of the reservoir problem is elegant. It
follows a very logical and straight forward principle that satisfies the statements
above. Implementing the LHA from figure 3 does not pose a challenge in RTM.
The model check tools provided by RTM proved to be straight forward once the
tests have been formalized in temporal logic.

However, the choice of using LHA as the formalization tool imposes a limita-
tion. A LHA is limited to problems that falls into ordinary differential equations
in respect to time. Additionally, it must only use affine tests and attributions.
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Although many problems that translate into a CPS can fit this model, there are
problems that do not fit these requirements.

4 The synchronous product of rewrite systems and
real-time rewrite systems

The synchronous product of two systems is a procedure to compose such systems
such that they evolve simultaneously if they synchronize in a given step. A key
concept in the synchronous product is the compatibility relation, denoted by ≈.
Two states, s1 and s2, synchronize on a given action if they are compatible, that
is, iff for each property (or atomic proposition) p shared by both states p holds
in s1 iff p holds in s2.

In [18], the authors specify that given two rewrite systems Ri = (Σi, Ei ∪
Ai, Ri), for i = 1, 2, their synchronous product, denoted R1 ‖ R2, is a new
rewrite system R = (Σ,E ∪ A,R) as follows, (i) Σ = Σ1 ] Σ2 ] Σ′, where ]
denotes the disjoint union of two ets, Σ′ contains, among other declarations, (a)
a declaration for the operator R.|= : R.State × R.Prop → R.Bool, where
notation R.Sort , or R.op , denotes sort Sort , or operation op , from rewrite
system R; (b) a declaration for the predicate R.≈ : R1.State × R2.State →
R.Bool. (ii) E = E1 ]E2 ]E′, where E′ contains, among other declarations: (a)
equations to reduce s1 ≈ s2 to true; (iii) A = A1]A2; (iv) R is composed of the
following set of rules: (a) for each rule label l that exists in both systems, say
[l]si → s′i ∈ Ri, we have in R the conditional rule [l]〈s1, s2〉 → 〈s′1, s′2〉if s′1 ≈ s′2,
with constructor 〈 , 〉 denoting the product state; (b) for each rule label l that
exists in R1 but not in R2, say [l]s1 → s′1 ∈ R1, we have in R the conditional
rule [l]〈s1, x2〉 → 〈s′1, x2〉 if s′1 ≈ x2 (with x2 a variable of sort R2.State); (c)
correspondingly for rule labels in R2 but not in R1.

Now in this paper we propose that given two real-time rewrite systems Ri =
(Σi, Ei∪Ai, Ri∪Rti) with Ri instantaneous rewrite rules and tick rules Rti , with
the same subequational theory for TIME, the synchronized real-time system
R = (Σ,E ∪ A,R ∪ Rt) has each individual component composed as above
but each tick rule in Rt requires its left-hand side and right-hand side to be
R-compatible, that is, each r in Rt relate product states that are compatible
using the rules in R. Therefore, a (possibly infinite, Zeno) computation t0 −→
t1 −→ . . . in the synchronized real-time system R has a step 〈s1i

, s2l
〉 u−→

〈s1j
, s2k
〉 such that the product state 〈s1j

, s2k
〉 is reached from 〈s1i

, s2l
〉 after a

computation composed by R-compatible untimed transitions, that is, transitions
resulting from the application of rules in R where each state in the computation
is compatible with its predecessor.

In what follows, we specify (a simplified version) of a modular 2-reservoir
problem using the synchronous product extension of Full-Maude available in http:

//maude.sip.uc.es/syncprod. (An extension of Real-Time Maude with real-
time synchronous product as described above is under development.) In List-
ing 1.2 we specify the behavior of a reservoir as a component whose state is
either below (its fluid threshold) or ok. Whenever the clock ticks, modeled by
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rule labeled tick, the reservoir (actually, all of them as they will synchronize
with this action) may change its state from ok to below. And by (re)filling it, it
may change from below to ok. State predicate refill1? is true when the state
of the reservoir is below.

1 (mod RESERVOIR1 is
2 including SATISFACTION . −−− declares State, Prop, and |=.
3 ops below ok : −> State [ctor] .
4 rl [tick] : ok => below .
5 rl [fill1] : below => ok .
6 op refill1? : −> Prop .
7 eq below |= refill1? = true .
8 eq ok |= refill1? = false .
9 endm)

Listing 1.2. Modular specification of a reservoir

Now, the 2-reservoir system is given by the synchronous product of reser-
voirs 1 and 2, as declared in Listing 1.3 by the statement pr RESERVOIR1 ||

RESERVOIR2 .. Module 2-RESERVOIR-SYSTEM also declares a state proposition
specifying that the 2-reservoir system is safe if reservoirs 1 and 2 are not in state
below at the same time.

1 (mod 2−RESERVOIR−SYSTEM is
2 pr RESERVOIR1 || RESERVOIR2 .
3 op safe : −> Prop [ctor] .
4 eq S:State |= safe = not (S:State |= refill1? and S:State |= refill2?) .
5 endm)

Listing 1.3. The 2-reservoir system as the product of reservoirs

We may now model check this specification and prove that it is not the
case that the system is always safe starting from state < ok, ok > where both
reservoirs are above their thresholds. A counter-example is produced showing

the infinite loop < ok,ok >
tick−→ < below,below >

fill2−→ < below,ok >
fill1−→

< ok,ok > . . ..

1 (mod MODEL−CHECK−2−RESERVOIR−SYSTEM is
2 pr 2−RESERVOIR−SYSTEM .
3 inc MODEL−CHECKER ∗ (sort State to Conf) .
4 inc LTL−SIMPLIFIER .
5 subsort Conf < State .
6 op init : −> State .
7 eq init = < ok, ok > .
8 endm)
9

10 (red modelCheck(init, [] safe) .)
11 reduce in MODEL−CHECK−2−RESERVOIR−SYSTEM :
12 modelCheck(init,[]safe)
13 result [ModelCheckResult] :
14 counterexample({< ok,ok >,’tick},{< below,below >,’fill2}{< below,ok >,
15 ’fill1}{< ok,ok >,’tick})

Listing 1.4. Model checking the 2-reservoir as a synchronous product

5 Related work

Even though CPS are not a new concept, to this day an optimal set of formalisms,
languages and tools are not properly defined. In David Broman et al. [9] describe
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an extensive list of formal methods, languages and tools that can be combined
to let an entity specify, design, develop and test a CPS.

Some problems were approached through the eyes of the Model checking
methodology to verify the safety properties. Akella and McMillin [1] modeled a
CPS as a Security Process Algebra. They used model checker, CoPs, to check the
confidentially properties. Bu et al. [10] analyzed CPS aspects using a statistical
model checker. Highlight that in this approach the state space explosion also
occurs like in classical model checking problems.

Zhang et al. [27] present a model to verify the safety properties in mobile
CPS based on a SAT-based model checking algorithm. The system was modeled
as a Petri net and presented a lower memory consumption.

A combined model checking and a new version of PALS (physically asyn-
chronous, logically synchronous) were applied to verified an airplane turning
control system in [6] and [7]. Bae et al. [7] also present other applications as
a networked thermostat controllers and networked water tank controllers with
gravity component .

This paper takes advantage of one possible set of such techniques to model
(LHA), develop (Maude) and model check (Maude) the leaking reservoir prob-
lem specified in [17]. Additional formalisms that are capable of modeling the
reservoir problem are presented in [9]. Some examples are: Differential Equa-
tions, additional State Machines model beyond LHA, Dataflow, Discrete Events.
Each of these methods can be used alongside a plethora of tools and languages
to develop and model check phases of a CPS.

Each formalism technique is going to favor a set of tools and languages when
development moves to the next phase. The LHA approach used in this paper
favors a model check approach such as Maude. Of course other checkers such
as SAL [20], Spin [16], NuSMV [13] and UPPAAL [8] are viable options for
the design process of a LHA based CPS. For an approach based on Discrete
Event techniques, the language and tools would most likely been based on Hard
Description Languages based on VHDL like Verilog [25] or AMS with added ex-
tensions [12]. Meanwhile, a DataFlow based approach is more likely to leverage
a language like Lustre [11]. Each bringing their own set advantages and limi-
tations, making it even harder to create consensus on a standardized end-to-to
process to specify, validate and develop a CPS.

This situation highlights the toughest aspect of CPS design and implemen-
tation. Depending on the context of the project sponsors, their perspective can
influence the formalism path adopted and push the project toward one of an-
other set of languages and tools. This is an area of CPS design that could be
improved through increased availability of references that provide a study case
of such methods applied to the same problem, and provide a qualitative and
quantitative comparison of the results of each individual implementation. Such
works seem to be at a preliminary stage at this point in time.
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6 Conclusion

This work presents a first step in creating a formal model to modularly specify
and model check CPS by precisely describing the concept of modular CPS mod-
eling and illustrating it with a case study on how to model a CPS as a LHA and
effectively implement it in RTM. It creates succinct code to simulate and model
check the problem in this study scope.

We are currently developing an extension of RTM to support the notion of
synchronous product of real-time systems as described in this paper. Our results
are encouraging, as illustrated in this paper.

There are also opens further questions, which require further studies in terms
of creating more precise models for the leaking reservoir models and other types
of automata that can be used as starting point for CPS modeling alongside their
respective implementation in RTM.
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