Skip to main content

The Computational Techniques for Optimal Store Placement: A Review

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10961))

Included in the following conference series:

  • 2387 Accesses

Abstract

In today’s world which is subject to an increasing number of stores and level of rivalry on a daily basis, decisions concerning a store’s location are considered highly important. Over the years, researchers and marketers have used a variety of different approaches for solving the optimal store location problem. Like many other research areas, earlier methods for site selection involved the use of statistical data whereas recent methods rely on the rich content which can be extracted from big data via modern data analysis techniques. In this paper, we begin with assessing the historical precedent of the most accepted and applied traditional computational methods for determining a desirable place for a store. We proceed by discussing some of the technological advancements that has led to the advent of more cutting-edge data-driven methods. Finally, we extend a review of some of the most recent, location based social network data-based approaches, to solving the store site selection problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    LSBN.

  2. 2.

    Global Positioning System.

  3. 3.

    Radio Frequency Identification.

  4. 4.

    Geospatial Information Systems.

  5. 5.

    VGI.

  6. 6.

    MAUP.

  7. 7.

    www.foursquare.com.

  8. 8.

    Normalized Discounted Cumulative Gain approach.

  9. 9.

    www.Baidu.com.

  10. 10.

    www.Dianping.com.

  11. 11.

    www.Yelp.com.

  12. 12.

    RMSE.

  13. 13.

    MAP.

References

  • Ali, M., Greenbaum, S.: A spatial model of the banking industry. J. Finan. XXXII(4), 1283–1303 (1977)

    Article  Google Scholar 

  • Aoyagi, M., Okabe, A.: Spatial competition of firms in a two dimensional bounded market. Reg. Sci. Urban Econ. 23, 259–289 (1993)

    Article  Google Scholar 

  • Arcaute, E., Molinero, C., Hatna, E., Murcio, R., Vargas-ruiz, C., Masucci, A.P., Batty, M.: Cities and Regions in Britain through hierarchical percolation (2015)

    Google Scholar 

  • Berry, B.J.L., Garrison, W.L., Berry, B.J.L., Garrison, W.L.: The functional bases of the central place hierarchy. Econ. Geogr. 34(2), 145–154 (2014)

    Article  Google Scholar 

  • Birkin, M.: Customer targeting, geodemographics and lifestyle approaches. GIS for Bus. Serv. Plan. 104–138 (1995). https://www.amazon.com/Business-Service-Planning-Paul-Longley/dp/0470235101

  • Boventer, E.: Walter christaller’s central places and peripheral areas: the central place theory in retrospect. J. Reg. Sci. 9(1), 117–124 (1969)

    Article  Google Scholar 

  • Brown, S.: Retail location theory: evolution and evaluation Retail location theory: evolution and evaluation. Int. Rev. Retail Distrib. Consum. Res. 3, 185–229 (1993)

    Article  Google Scholar 

  • Brunner, J.A., Mason, J.L.: The influence of time upon driving shopping preference. J. Mark. 32(2), 57–61 (1968)

    Article  Google Scholar 

  • Booms, B.H., Bitner, M.J.: Marketing strategies and organization structures for service firms. In: Donnelly, J.H., George, W.R. (eds.) Marketing of Services, pp. 47–51. American Marketing Association, Chicago, IL (1981)

    Google Scholar 

  • Cadwallader, M.: Towards a cognitive gravity model: the case of consumer spatial behaviour. Reg. Stud. 15(4), 37–41 (1981). https://doi.org/10.1080/09595238100185281

    Article  Google Scholar 

  • Cardillo, A., Scellato, S., Latora, V., Porta, S.: Structural properties of planar graphs of urban street patterns, pp. 1–8 (2006). https://doi.org/10.1103/PhysRevE.73.066107

  • Chen, L., Tsai, C.: Data mining framework based on rough set theory to improve location selection decisions: a case study of a restaurant chain. Tourism Manag. 53, 197–199 (2016)

    Article  Google Scholar 

  • Daniels, M.J.: Central place theory and sport tourism impacts, 34(2), 332–347 (2007). https://doi.org/10.1016/j.annals.2006.09.004

  • Devletoglou, N.E.: A dissenting view of duopoly and spatial competition. Economica 32(126), 140–160 (1965)

    Article  Google Scholar 

  • Drezner, Z.: Competitive location strategies for two facilities. Reg. Sci. Urban Econ. 12(4), 485–493 (1982). https://doi.org/10.1016/0166-0462(82)90003-5

    Article  Google Scholar 

  • González-Benito, Ó., Muñoz-Gallego, P.A., Kopalle, P.K.: Asymmetric competition in retail store formats: evaluating inter- and intra-format spatial effects. J. Retail. 81(1), 59–73 (2005). https://doi.org/10.1016/j.jretai.2005.01.004

    Article  Google Scholar 

  • Goodchild, M.F.: Citizens As Sensors: The World Of Volunteered Geography, pp. 1–15 (2006)

    Google Scholar 

  • Harris, B.: A note on the probability. J. Reg. Sci. 5(2), 31–35 (1964)

    Article  Google Scholar 

  • Hartwick, J.M., Hartwick, P.G.: Duopoly in space. Can. J. Econ. 4(4), 485–505 (1971)

    Article  Google Scholar 

  • Hehenkamp, B., Wambach, A.: Survival at the center-the stability of minimum differentiation. J. Econ. Behav. Organ. 76(3), 853–858 (2010). https://doi.org/10.1016/j.jebo.2010.09.018

    Article  Google Scholar 

  • Hernandez, T., Bennison, D., Cornelius, S.: The organisational context of retail locational planning. GeoJournal 45, 299–300 (1998)

    Article  Google Scholar 

  • Hernández, T., Bennison, D.: The art and science of retail location decisions. Int. J. Retail Distrib. Manag. Emerald 28(8), 357–367 (2005)

    Article  Google Scholar 

  • Hillier, B., Hanson, J.: The Social Logic Of Space. Cambridge University Press (1984)

    Google Scholar 

  • Hillier, B., Perm, A., Hanson, J., Grajewski, T., Xu, J.: Natural movement: or, configuration and attraction in urban pedestrian movement. Environ. Plan. B: Plan. Des. 20, 29–66 (1993)

    Article  Google Scholar 

  • Hotelling, H.: Stability in competition. Econ. J. 39(153), 41–57 (1929)

    Article  Google Scholar 

  • Huff, D.: A note on the limitations of intraurban gravity models. Land Econ. 38(1), 64–66 (1962)

    Article  Google Scholar 

  • Huff, D.: A probabilistic analysis of shopping center trade areas. Land Econ. 39(1), 81–90 (1963)

    Article  Google Scholar 

  • Huff, D.L.: Defining and estimating a trading area. J. Mark. 28, 34–38 (1964)

    Article  Google Scholar 

  • Karamshuk, D., et al.: Geo-Spotting: Mining Online Location-based Services for optimal retail store placement (2013)

    Google Scholar 

  • Kheiri, A., Karimipour, F., Forghani, M.: Intra-urban movement pattern estimation based on location based social networking data. J. Geomat. Sci. Technol. 6(1), 141–158 (2016)

    Google Scholar 

  • Kubis, A., Hartmann, M.: Analysis of location of large-area shopping centres, a probabilistic gravity model for the Halle–Leipzig Area. Jahrbuch F¨ Ur Regionalwissenschaft 27, 43–57 (2007). https://doi.org/10.1007/s10037-006-0010-3

    Article  Google Scholar 

  • Lakshmanan, J.R., Hansen, W.G.: A retail market potential model. J. Am. Inst. Plan. 31(2), 134–143 (1965). https://doi.org/10.1080/01944366508978155

    Article  Google Scholar 

  • Lerner, A.P., Singer, H.W.: Some notes on duopoly and spatial competition. J. Polit. Econ. 45(2), 145–186 (1937)

    Article  Google Scholar 

  • Li, Y., Liu, L.: Assessing the impact of retail location on store performance: a comparison of Wal-Mart and Kmart stores in Cincinnati. Appl. Geogr. 32(2), 591–600 (2012). https://doi.org/10.1016/j.apgeog.2011.07.006

    Article  MathSciNet  Google Scholar 

  • Litz, R.A.: Does small store location matter? A test of three classic theories of retail location. J, Small Bus. Entrepreneurship, 37–41 (2014). https://doi.org/10.1080/08276331.2008.10593436

  • Liu, Y., Liu, X., Gao, S., Gong, L., Kang, C., Zhi, Y., Chi, G.: Social sensing: a new approach to understanding our socioeconomic environments. Ann. Assoc. Am. Geogr. 37–41, May, 2015. https://doi.org/10.1080/00045608.2015.1018773

  • Lloyd, A., Cheshire, J.: Computers, environment and urban systems deriving retail centre locations and catchments from geo-tagged Twitter data. CEUS 61, 108–118 (2017). https://doi.org/10.1016/j.compenvurbsys.2016.09.006

    Article  Google Scholar 

  • Miller, H., Goodchild.: Data-driven geography Data-driven geography. GeoJournal, August 2015. https://doi.org/10.1007/s10708-014-9602-6

  • Nakamura, D.: Social participation and social capital with equity and efficiency: an approach from central-place theory q. Appl. Geogr. 49, 54–57 (2014). https://doi.org/10.1016/j.apgeog.2013.09.008

    Article  Google Scholar 

  • Nelson, R.L.: The selection of retail locations. F.W. Dodge Corp., New York (1958)

    Google Scholar 

  • Nogueira, M., Crocco, M., Figueiredo, A. T., Diniz, G.: Financial hierarchy and banking strategies : a regional analysis for the Brazilian case, pp. 1–18 (2014). https://doi.org/10.1093/cje/beu008

  • Ottino-loffler, B., Stonedahl, F., Wilensky, U.: Spatial Competition with Interacting Agents, pp. 1–16 (2017)

    Google Scholar 

  • Papalexakis, E.E., Pelechrinis, K., Faloutsos, C.: Location Based Social Network Analysis Using Tensors and Signal Processing Tools (2011)

    Google Scholar 

  • Piovani, D., Molinero, C., Wilson, A.: Urban retail dynamics : insights from percolation theory and spatial interaction modelling, pp. 1–11 (2017)

    Google Scholar 

  • Porta, S., Strano, E., Iacoviello, V., Messora, R., Latora, V., Cardillo, A., Scellato, S.: Street centrality and densities of retail and services in Bologna, Italy 36, 450–466 (2009). https://doi.org/10.1068/b34098

  • Rafiq, M., Ahmed, P.K.: Using the 7Ps as a generic marketing mix. Mark. Intell. Plan. 13(9), 4–15 (1992)

    Article  Google Scholar 

  • Rahman, K., Nayeem, M.A.: Finding suitable places for live campaigns using location-based services, pp. 1–6 (2017)

    Google Scholar 

  • Rushton, G.: Analysis of spatial behavior by revealed space preference. Annals. Assoc. Am. Geogr. 59, 391–400 (1969)

    Article  Google Scholar 

  • Reilly, W.J.: Methods for the Study of Retail Relationships. University of Texas, Bureau of Business Research, Bulletin No. 2944, Austin (1929)

    Google Scholar 

  • Satani, N., Uchida, A., Deguchi, A., Ohgai, A., Sato, S., Hagishima, S.: Commercial facility location model using multiple regression analysis. Science 22(3), 219–240 (1998)

    Google Scholar 

  • Smithies, A.: Optimum location in spatial competition. J. Polit. Econ. 49(3), 423–439 (1941)

    Article  Google Scholar 

  • Suárez-Vega, R., Santos-Peñate, D.R., Dorta-González, P., Rodríguez-Díaz, M.: A multi-criteria GIS based procedure to solve a network competitive location problem. Appl. Geogr. 31(1), 282–291 (2011). https://doi.org/10.1016/j.apgeog.2010.06.002

    Article  Google Scholar 

  • Tabuchi, T.: Two-stage two-dimensional spatial competition between two firms. Reg. Sci. Urban Econ. 24(2), 207–227 (1994). https://doi.org/10.1016/0166-0462(93)02031-W

    Article  Google Scholar 

  • Taneja, S.: Technology Moves. In: Chain Store Age, pp. 136–137 (1999)

    Google Scholar 

  • Teller, C., Reutterer, T.: The evolving concept of retail attractiveness: what makes retail agglomerations attractive when customers shop at them? J. Retail. Consum. Serv. 15(3), 127–143 (2008). https://doi.org/10.1016/j.jretconser.2007.03.003

    Article  Google Scholar 

  • Voorhees, A.: Geography of Prices and Spatial Interaction (1957)

    Google Scholar 

  • Wang, F., Chen, C., Xiu, C., Zhang, P.: Location analysis of retail stores in Changchun, China: a street centrality perspective. Cities 41, 54–63 (2014). https://doi.org/10.1016/j.cities.2014.05.005

    Article  Google Scholar 

  • Wang, F., Chen, L.: Where to Place Your Next Restaurant? Optimal Restaurant Placement via Leveraging User-Generated Reviews, pp. 2371–2376 (2016)

    Google Scholar 

  • Warnts, W.: Geography of prices and spatial interaction. In: Papers and Proceedings of the Regional Science Association, vol. 3 (1957)

    Google Scholar 

  • Wilson, A.G.: A statistical theory of spatial distribution models. Transp. Res. 1(3), 253–269 (1967)

    Article  Google Scholar 

  • Wilson, A.G., Oulton, M.J.: The corner-shop to supermarket transition in retailing: the beginnings of empirical evidence. Environ. Plan. A 15, 265–274 (1983)

    Article  Google Scholar 

  • Xu, Y., Liu, L.: Gis Based Analysis of Store Closure : a Case Study of an Office Depot Store in Cincinnati, pp. 7–9, June 2004

    Google Scholar 

  • Yu, Z., Tian, M., Wang, Z.H.U., Guo, B.I.N.: Shop-type recommendation leveraging the data from social media and location-based services. ACM Trans. Knowl. Discov. Data (TKDD) 11(1), 1–21 (2016)

    Article  Google Scholar 

  • Zhou, X., Zhang, L.: Crowdsourcing functions of the living city from Twitter and Foursquare data, 406, February 2016. https://doi.org/10.1080/15230406.2015.1128852

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Abdolvand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Damavandi, H., Abdolvand, N., Karimipour, F. (2018). The Computational Techniques for Optimal Store Placement: A Review. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10961. Springer, Cham. https://doi.org/10.1007/978-3-319-95165-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95165-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95164-5

  • Online ISBN: 978-3-319-95165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics