Abstract
In today’s world which is subject to an increasing number of stores and level of rivalry on a daily basis, decisions concerning a store’s location are considered highly important. Over the years, researchers and marketers have used a variety of different approaches for solving the optimal store location problem. Like many other research areas, earlier methods for site selection involved the use of statistical data whereas recent methods rely on the rich content which can be extracted from big data via modern data analysis techniques. In this paper, we begin with assessing the historical precedent of the most accepted and applied traditional computational methods for determining a desirable place for a store. We proceed by discussing some of the technological advancements that has led to the advent of more cutting-edge data-driven methods. Finally, we extend a review of some of the most recent, location based social network data-based approaches, to solving the store site selection problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
LSBN.
- 2.
Global Positioning System.
- 3.
Radio Frequency Identification.
- 4.
Geospatial Information Systems.
- 5.
VGI.
- 6.
MAUP.
- 7.
- 8.
Normalized Discounted Cumulative Gain approach.
- 9.
- 10.
- 11.
- 12.
RMSE.
- 13.
MAP.
References
Ali, M., Greenbaum, S.: A spatial model of the banking industry. J. Finan. XXXII(4), 1283–1303 (1977)
Aoyagi, M., Okabe, A.: Spatial competition of firms in a two dimensional bounded market. Reg. Sci. Urban Econ. 23, 259–289 (1993)
Arcaute, E., Molinero, C., Hatna, E., Murcio, R., Vargas-ruiz, C., Masucci, A.P., Batty, M.: Cities and Regions in Britain through hierarchical percolation (2015)
Berry, B.J.L., Garrison, W.L., Berry, B.J.L., Garrison, W.L.: The functional bases of the central place hierarchy. Econ. Geogr. 34(2), 145–154 (2014)
Birkin, M.: Customer targeting, geodemographics and lifestyle approaches. GIS for Bus. Serv. Plan. 104–138 (1995). https://www.amazon.com/Business-Service-Planning-Paul-Longley/dp/0470235101
Boventer, E.: Walter christaller’s central places and peripheral areas: the central place theory in retrospect. J. Reg. Sci. 9(1), 117–124 (1969)
Brown, S.: Retail location theory: evolution and evaluation Retail location theory: evolution and evaluation. Int. Rev. Retail Distrib. Consum. Res. 3, 185–229 (1993)
Brunner, J.A., Mason, J.L.: The influence of time upon driving shopping preference. J. Mark. 32(2), 57–61 (1968)
Booms, B.H., Bitner, M.J.: Marketing strategies and organization structures for service firms. In: Donnelly, J.H., George, W.R. (eds.) Marketing of Services, pp. 47–51. American Marketing Association, Chicago, IL (1981)
Cadwallader, M.: Towards a cognitive gravity model: the case of consumer spatial behaviour. Reg. Stud. 15(4), 37–41 (1981). https://doi.org/10.1080/09595238100185281
Cardillo, A., Scellato, S., Latora, V., Porta, S.: Structural properties of planar graphs of urban street patterns, pp. 1–8 (2006). https://doi.org/10.1103/PhysRevE.73.066107
Chen, L., Tsai, C.: Data mining framework based on rough set theory to improve location selection decisions: a case study of a restaurant chain. Tourism Manag. 53, 197–199 (2016)
Daniels, M.J.: Central place theory and sport tourism impacts, 34(2), 332–347 (2007). https://doi.org/10.1016/j.annals.2006.09.004
Devletoglou, N.E.: A dissenting view of duopoly and spatial competition. Economica 32(126), 140–160 (1965)
Drezner, Z.: Competitive location strategies for two facilities. Reg. Sci. Urban Econ. 12(4), 485–493 (1982). https://doi.org/10.1016/0166-0462(82)90003-5
González-Benito, Ó., Muñoz-Gallego, P.A., Kopalle, P.K.: Asymmetric competition in retail store formats: evaluating inter- and intra-format spatial effects. J. Retail. 81(1), 59–73 (2005). https://doi.org/10.1016/j.jretai.2005.01.004
Goodchild, M.F.: Citizens As Sensors: The World Of Volunteered Geography, pp. 1–15 (2006)
Harris, B.: A note on the probability. J. Reg. Sci. 5(2), 31–35 (1964)
Hartwick, J.M., Hartwick, P.G.: Duopoly in space. Can. J. Econ. 4(4), 485–505 (1971)
Hehenkamp, B., Wambach, A.: Survival at the center-the stability of minimum differentiation. J. Econ. Behav. Organ. 76(3), 853–858 (2010). https://doi.org/10.1016/j.jebo.2010.09.018
Hernandez, T., Bennison, D., Cornelius, S.: The organisational context of retail locational planning. GeoJournal 45, 299–300 (1998)
Hernández, T., Bennison, D.: The art and science of retail location decisions. Int. J. Retail Distrib. Manag. Emerald 28(8), 357–367 (2005)
Hillier, B., Hanson, J.: The Social Logic Of Space. Cambridge University Press (1984)
Hillier, B., Perm, A., Hanson, J., Grajewski, T., Xu, J.: Natural movement: or, configuration and attraction in urban pedestrian movement. Environ. Plan. B: Plan. Des. 20, 29–66 (1993)
Hotelling, H.: Stability in competition. Econ. J. 39(153), 41–57 (1929)
Huff, D.: A note on the limitations of intraurban gravity models. Land Econ. 38(1), 64–66 (1962)
Huff, D.: A probabilistic analysis of shopping center trade areas. Land Econ. 39(1), 81–90 (1963)
Huff, D.L.: Defining and estimating a trading area. J. Mark. 28, 34–38 (1964)
Karamshuk, D., et al.: Geo-Spotting: Mining Online Location-based Services for optimal retail store placement (2013)
Kheiri, A., Karimipour, F., Forghani, M.: Intra-urban movement pattern estimation based on location based social networking data. J. Geomat. Sci. Technol. 6(1), 141–158 (2016)
Kubis, A., Hartmann, M.: Analysis of location of large-area shopping centres, a probabilistic gravity model for the Halle–Leipzig Area. Jahrbuch F¨ Ur Regionalwissenschaft 27, 43–57 (2007). https://doi.org/10.1007/s10037-006-0010-3
Lakshmanan, J.R., Hansen, W.G.: A retail market potential model. J. Am. Inst. Plan. 31(2), 134–143 (1965). https://doi.org/10.1080/01944366508978155
Lerner, A.P., Singer, H.W.: Some notes on duopoly and spatial competition. J. Polit. Econ. 45(2), 145–186 (1937)
Li, Y., Liu, L.: Assessing the impact of retail location on store performance: a comparison of Wal-Mart and Kmart stores in Cincinnati. Appl. Geogr. 32(2), 591–600 (2012). https://doi.org/10.1016/j.apgeog.2011.07.006
Litz, R.A.: Does small store location matter? A test of three classic theories of retail location. J, Small Bus. Entrepreneurship, 37–41 (2014). https://doi.org/10.1080/08276331.2008.10593436
Liu, Y., Liu, X., Gao, S., Gong, L., Kang, C., Zhi, Y., Chi, G.: Social sensing: a new approach to understanding our socioeconomic environments. Ann. Assoc. Am. Geogr. 37–41, May, 2015. https://doi.org/10.1080/00045608.2015.1018773
Lloyd, A., Cheshire, J.: Computers, environment and urban systems deriving retail centre locations and catchments from geo-tagged Twitter data. CEUS 61, 108–118 (2017). https://doi.org/10.1016/j.compenvurbsys.2016.09.006
Miller, H., Goodchild.: Data-driven geography Data-driven geography. GeoJournal, August 2015. https://doi.org/10.1007/s10708-014-9602-6
Nakamura, D.: Social participation and social capital with equity and efficiency: an approach from central-place theory q. Appl. Geogr. 49, 54–57 (2014). https://doi.org/10.1016/j.apgeog.2013.09.008
Nelson, R.L.: The selection of retail locations. F.W. Dodge Corp., New York (1958)
Nogueira, M., Crocco, M., Figueiredo, A. T., Diniz, G.: Financial hierarchy and banking strategies : a regional analysis for the Brazilian case, pp. 1–18 (2014). https://doi.org/10.1093/cje/beu008
Ottino-loffler, B., Stonedahl, F., Wilensky, U.: Spatial Competition with Interacting Agents, pp. 1–16 (2017)
Papalexakis, E.E., Pelechrinis, K., Faloutsos, C.: Location Based Social Network Analysis Using Tensors and Signal Processing Tools (2011)
Piovani, D., Molinero, C., Wilson, A.: Urban retail dynamics : insights from percolation theory and spatial interaction modelling, pp. 1–11 (2017)
Porta, S., Strano, E., Iacoviello, V., Messora, R., Latora, V., Cardillo, A., Scellato, S.: Street centrality and densities of retail and services in Bologna, Italy 36, 450–466 (2009). https://doi.org/10.1068/b34098
Rafiq, M., Ahmed, P.K.: Using the 7Ps as a generic marketing mix. Mark. Intell. Plan. 13(9), 4–15 (1992)
Rahman, K., Nayeem, M.A.: Finding suitable places for live campaigns using location-based services, pp. 1–6 (2017)
Rushton, G.: Analysis of spatial behavior by revealed space preference. Annals. Assoc. Am. Geogr. 59, 391–400 (1969)
Reilly, W.J.: Methods for the Study of Retail Relationships. University of Texas, Bureau of Business Research, Bulletin No. 2944, Austin (1929)
Satani, N., Uchida, A., Deguchi, A., Ohgai, A., Sato, S., Hagishima, S.: Commercial facility location model using multiple regression analysis. Science 22(3), 219–240 (1998)
Smithies, A.: Optimum location in spatial competition. J. Polit. Econ. 49(3), 423–439 (1941)
Suárez-Vega, R., Santos-Peñate, D.R., Dorta-González, P., Rodríguez-Díaz, M.: A multi-criteria GIS based procedure to solve a network competitive location problem. Appl. Geogr. 31(1), 282–291 (2011). https://doi.org/10.1016/j.apgeog.2010.06.002
Tabuchi, T.: Two-stage two-dimensional spatial competition between two firms. Reg. Sci. Urban Econ. 24(2), 207–227 (1994). https://doi.org/10.1016/0166-0462(93)02031-W
Taneja, S.: Technology Moves. In: Chain Store Age, pp. 136–137 (1999)
Teller, C., Reutterer, T.: The evolving concept of retail attractiveness: what makes retail agglomerations attractive when customers shop at them? J. Retail. Consum. Serv. 15(3), 127–143 (2008). https://doi.org/10.1016/j.jretconser.2007.03.003
Voorhees, A.: Geography of Prices and Spatial Interaction (1957)
Wang, F., Chen, C., Xiu, C., Zhang, P.: Location analysis of retail stores in Changchun, China: a street centrality perspective. Cities 41, 54–63 (2014). https://doi.org/10.1016/j.cities.2014.05.005
Wang, F., Chen, L.: Where to Place Your Next Restaurant? Optimal Restaurant Placement via Leveraging User-Generated Reviews, pp. 2371–2376 (2016)
Warnts, W.: Geography of prices and spatial interaction. In: Papers and Proceedings of the Regional Science Association, vol. 3 (1957)
Wilson, A.G.: A statistical theory of spatial distribution models. Transp. Res. 1(3), 253–269 (1967)
Wilson, A.G., Oulton, M.J.: The corner-shop to supermarket transition in retailing: the beginnings of empirical evidence. Environ. Plan. A 15, 265–274 (1983)
Xu, Y., Liu, L.: Gis Based Analysis of Store Closure : a Case Study of an Office Depot Store in Cincinnati, pp. 7–9, June 2004
Yu, Z., Tian, M., Wang, Z.H.U., Guo, B.I.N.: Shop-type recommendation leveraging the data from social media and location-based services. ACM Trans. Knowl. Discov. Data (TKDD) 11(1), 1–21 (2016)
Zhou, X., Zhang, L.: Crowdsourcing functions of the living city from Twitter and Foursquare data, 406, February 2016. https://doi.org/10.1080/15230406.2015.1128852
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Damavandi, H., Abdolvand, N., Karimipour, F. (2018). The Computational Techniques for Optimal Store Placement: A Review. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10961. Springer, Cham. https://doi.org/10.1007/978-3-319-95165-2_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-95165-2_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95164-5
Online ISBN: 978-3-319-95165-2
eBook Packages: Computer ScienceComputer Science (R0)