Abstract
This paper aims to illustrate the application of a derivative-free multistart algorithm with coordinate search filter, designated as the MCSFilter algorithm. The problem used in this study is the parameter estimation problem of the kinetic \(\alpha \)-pinene isomerization model. This is a well known nonlinear optimization problem (NLP) that has been investigated as a case study for performance testing of most derivative based methods proposed in the literature. Since the MCSFilter algorithm features a stochastic component, it was run ten times to solve the NLP problem. The optimization problem was successfully solved in all the runs and the optimal solution demonstrates that the MCSFilter provides a good quality solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Box, G.E.P., Draper, N.R.: The Bayesian estimation of common parameters from several responses. Biometrika 52(3–4), 355–365 (1965)
Box, G.E.P., Hunter, W.G., MacGregor, J.F., Erjavec, J.: Some problems associated with the analysis of multiresponse data. Technometrics 15(1), 33–51 (1973)
Ames, W.F.: Canonical forms for non-linear kinetic differential equations. Ind. Eng. Chem. Fundam. 1(3), 214–218 (1962)
Tjoa, I.-B., Biegler, L.T.: Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems. Ind. Eng. Chem. 30, 376–385 (1991)
Averick, B.M., Carter, R.G., Moré, J.J., Xue, G.: The minpack-2 test problem collection. Technical report, Mathematics and Computer Science Division, Argonne National Laboratory (1992)
Dolan, E.D., Moré, J.J., Munson, T.S.: Benchmarking optimization software with cops 3.0. Technical report, Argonne National Laboratory (2004)
Egea, J.A., Rodriguez-Fernandez, M., Banga, J.R., Martí, R.: Scatter search for chemical and bio-process optimization. J. Global Optim. 37(3), 481–503 (2007)
Larrosa, J.A.E.: New Heuristics for Global Optimization of Complex Bioprocesses. Ph.D. thesis, University of Vigo (2008)
Csendes, T.: Non-linear parameter estimation by global optimization - efficiency and reliability. Acta Cybern. 8(4), 361–370 (1988)
Rocha, A.M.A.C., Martins, M.C., Costa, M.F.P., Fernandes, E.M.G.P.: Direct sequential based firefly algorithm for the \(\alpha \)-pinene isomerization problem. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 386–401. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_30
Fernandes, F.P., Costa, M.F.P., Fernandes, E.M.G.P.: Multilocal programming: a derivative-free filter multistart algorithm. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 333–346. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_27
Amador, A., Fernandes, F.P., Santos, L.O., Romanenko, A.: Application of MCSFilter to estimate stiction control valve parameters. In: International Conference of Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, vol. 1863, p. 270005 (2017)
Storn, R., Price, K.: Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)
Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. Inst. Electr. Electron. Eng. Trans. Evol. Comput. 4(3), 284–294 (2000)
Jones, D.R.: Direct global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 431–440. Springer, Boston (2001). https://doi.org/10.1007/0-306-48332-7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Amador, A., Fernandes, F.P., Santos, L.O., Romanenko, A., Rocha, A.M.A.C. (2018). Parameter Estimation of the Kinetic \(\alpha \)-Pinene Isomerization Model Using the MCSFilter Algorithm. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10961. Springer, Cham. https://doi.org/10.1007/978-3-319-95165-2_44
Download citation
DOI: https://doi.org/10.1007/978-3-319-95165-2_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95164-5
Online ISBN: 978-3-319-95165-2
eBook Packages: Computer ScienceComputer Science (R0)