Skip to main content

On Parallelizing Benson’s Algorithm:

Limits and Opportunities

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Abstract

Multiple objective linear programming problems frequently arise in various applications of computational and data science. An important class of iterative techniques for numerically solving these problems is based on Benson’s algorithm. This algorithm starts with an initial outer approximation of a polyhedron and then iteratively refines these outer approximations until a solution is found. This algorithm is an archetype of a class of methods that have been extensively studied serially. Today, however, there is hardly any discussion in the open literature on the difficulties encountered when executing this algorithm in parallel. To fill this gap, we report on numerical experiences when parallelizing Benson’s algorithm on two different shared-memory computers. More precisely, we quantify the performance of a parallelized version of this algorithm on two Intel systems (single socket Core i7-6700 with up to 4 threads and dual socket Xeon E5-2650v4 using up to 24 threads). We show that parallelizing Benson’s algorithm has its performance limitations caused by memory bandwidth saturation. We also sketch opportunities for future research directions on techniques that could improve the performance of Benson-type algorithms on parallel computers.

The computational experiments were performed on resources of Friedrich Schiller University Jena supported in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grant INST 275/334–1 FUGG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benson, H.P.: Further analysis of an outcome set-based algorithm for multiple-objective linear programming. J. Optim. Theory Appl. 97(1), 1–10 (1998). https://doi.org/10.1023/A:1022614814789

    Article  MathSciNet  MATH  Google Scholar 

  2. Butenhof, D.R.: Programming with Posix Threads. Addison-Wesley, Boston (1997)

    Google Scholar 

  3. Buttlar, D., Farrell, J., Nichols, B.: PThreads Programming. O’Reilly, Sebastopol (2013)

    Google Scholar 

  4. Ciripoi, D., Löhne, A., Weißing, B.: Bensolve tools - polyhedral calculus, global optimization and vector linear programming (2017). http://tools.bensolve.org

  5. Csirmaz, L.: Using multiobjective optimization to map the entropy region. Comput. Optim. Appl. 1–23 (2015) https://doi.org/10.1007/s10589-015-9760-6

  6. Ehrgott, M., Löhne, A., Shao, L.: A dual variant of Benson’s “outer approximation algorithm” for multiple objective linear programming. J. Global Optim. 52(4), 757–778 (2012). https://doi.org/10.1007/s10898-011-9709-y

    Article  MathSciNet  MATH  Google Scholar 

  7. Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M., Euler, R., Manoussakis, I. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61576-8_77

    Chapter  Google Scholar 

  8. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing, 2nd edn. Pearson, Harlow, UK (2003)

    MATH  Google Scholar 

  9. Hamel, A.H., Löhne, A., Rudloff, B.: Benson type algorithms for linear vector optimization and applications. J. Global Optim. 59(4), 811–836 (2014). https://doi.org/10.1007/s10898-013-0098-2

    Article  MathSciNet  MATH  Google Scholar 

  10. Löhne, A.: Vector Optimization with Infimum and Supremum. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18351-5

    Book  MATH  Google Scholar 

  11. Löhne, A., Weißing, B.: Equivalence between polyhedral projection, multiple objective linear programming and vector linear programming. Math. Methods Oper. Res. 84(2), 411–426 (2016). https://doi.org/10.1007/s00186-016-0554-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Löhne, A., Weißing, B.: Bensolve - a free VLP solver (2017). http://bensolve.org

  13. Löhne, A., Weißing, B.: The vector linear program solver Bensolve - notes on theoretical background. Eur. J. Oper. Res. 260(3), 807–813 (2017). https://doi.org/10.1016/j.ejor.2016.02.039

    Article  MathSciNet  MATH  Google Scholar 

  14. Makhorin, A.: GNU Linear Programming Kit: Reference Manual for GLPK version 4.64 (2017). http://www.gnu.org/software/glpk/glpk.html

  15. IEEE/ANSI Std 1003.1: IEEE standard for information technology-portable operating system interface (POSIX)-Part 1: System application program interface (API) (C language). IEEE (1996)

    Google Scholar 

  16. Ruszczyński, A., Vanderbei, R.J.: Frontiers of stochastically nondominated portfolios. Econometrica 71(4), 1287–1297 (2003). https://doi.org/10.1111/1468-0262.t01-1-00448

    Article  MathSciNet  MATH  Google Scholar 

  17. Shao, L., Ehrgott, M.: Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning. Math. Methods Oper. Res. 68(2), 257–276 (2008). https://doi.org/10.1007/s00186-008-0220-2

    Article  MathSciNet  MATH  Google Scholar 

  18. Shao, L., Ehrgott, M.: Approximating the nondominated set of an MOLP by approximately solving its dual problem. Math. Methods Oper. Res. 68(3), 469–492 (2008) https://doi.org/10.1007/s00186-007-0194-5

    Article  MathSciNet  Google Scholar 

  19. Tyburec, M.: Multi-criteria optimization of proton therapy treatment plan. Bachelor thesis, Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague (2015)

    Google Scholar 

  20. Wiecek, M.M., Zhang, H.: A parallel algorithm for multiple objective linear programs. Comput. Optim. Appl. 8(1), 41–56 (1997). https://doi.org/10.1023/A:1008606530836

    Article  MathSciNet  MATH  Google Scholar 

  21. Yoon, M.S., Kamal, A.E.: Optimal dataset allocation in distributed heterogeneous clouds. In: 2014 IEEE Globecom Workshops, pp. 75–80 (2014). https://doi.org/10.1109/GLOCOMW.2014.7063389

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Weißing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bücker, H.M., Löhne, A., Weißing, B., Zumbusch, G. (2018). On Parallelizing Benson’s Algorithm:. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10961. Springer, Cham. https://doi.org/10.1007/978-3-319-95165-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95165-2_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95164-5

  • Online ISBN: 978-3-319-95165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics