Skip to main content

Double Photoionization of Simple Molecules of Astrochemical Interest

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Abstract

An experimental and computational investigation characterizing the processes following the double photoionization of the methyloxirane and N-methylformamide molecules has been reported. The double photoionization experiments have been performed at the Elettra Synchrotron Facility of Trieste (Italy). Preliminary data show: (i) in the case of methyloxirane, six different two-body fragmentation processes leading to \( {\text{CH}}_{2}^{ + } /{\text{C}}_{2} {\text{H}}_{4} {\text{O}}^{ + } ,{\text{CH}}_{3}^{ + } /{\text{C}}_{ 2} {\text{H}}_{ 3} {\text{O}}^{ + } ,{\text{O}}^{ + } /{\text{C}}_{ 3} {\text{H}}_{6}^{ + } , {\text{ OH}}^{ + } / {\text{C}}_{ 3} {\text{H}}_{5}^{ + } ,{\text{C}}_{ 2} {\text{H}}_{3}^{ + } /{\text{CH}}_{ 3} {\text{O}}^{ + } ,{\text{C}}_{ 2} {\text{H}}_{4}^{ + } /{\text{CH}}_{ 2} {\text{O}}^{ + } \) pairs of final ions; (ii) in the case of N-methylformamide, two main two-body fragmentation processes, leading to \( {\text{CH}}_{3}^{ + } + {\text{CH}}_{2} {\text{NO}}^{ + } \) and \( {\text{H}}^{ + } + {\text{C}}_{2} {\text{H}}_{4} {\text{NO}}^{ + } \). The threshold’s energy for each dissociation channel is determined with the relative cross sections as a function of the investigated photon energy range. A careful analysis of recorded electron-ion-ion coincidence spectra mainly based on a Monte Carlo trajectory simulation is able to provide also the kinetic energy released (KER) distribution for the final ions of the investigated fragmentation reactions. These important experimental data are mandatory information to unravel the physical chemistry of the elementary processes induced by the interaction of photons, with simple relevant organic molecules: (i) the methyloxirane of astrochemical interest, being the first chiral molecule recently discovered in interstellar cloud Sagittarius B2; (ii) the N-methylformamide, being an important simple molecule containing the peptide bond, recently detected in the interstellar medium, in order to investigate its selective cleavage induced by UV photons. In the latter case, this can improve a deeper definition of formation/destruction routes in astrochemical environments of the more abundant formamide molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGuire, B.A., Carroll, P.B., Loomis, R.A., et al.: Science 352, 1449–1452 (2016)

    Article  Google Scholar 

  2. Belloche, A., Meshcheryakov, A.A., Garrod, R.T., et al.: A&A 601, A49 (2017)

    Article  Google Scholar 

  3. Wan, T.A., Davies, M.E.: Nature (London), 370, p. 449 (1994)

    Article  Google Scholar 

  4. Riviera, J.M., Martin, T., Rebek Jr., J.: Science 279, 1021 (1998)

    Article  Google Scholar 

  5. Pasteur, L.: Ann. Chim. Phys. 24, 442 (1848)

    Google Scholar 

  6. Falcinelli, S., Vecchiocattivi, F., Alagia, M., Schio, L., Richter, R., Stranges, S.P., et al.: J. Chem. Phys. 148, 114302 (2018)

    Article  Google Scholar 

  7. Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Leonori, F., Skouteris, D.: Theoretical study of reactions relevant for atmospheric models of titan: interaction of excited nitrogen atoms with small hydrocarbons. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part 1. LNCS, vol. 7333, pp. 331–344. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_26

    Chapter  Google Scholar 

  8. Falcinelli, S., Pirani, F., Vecchiocattivi, F.: Atmosphere 6(3), 299–317 (2015)

    Article  Google Scholar 

  9. Alagia, M., Balucani, N., Candori, P., Falcinelli, S., Richter, R., Rosi, M., Pirani, F., Stranges, S., Vecchiocattivi, F.: Rendiconti Lincei Scienze Fisiche e Naturali 24, 53–65 (2013)

    Article  Google Scholar 

  10. Falcinelli, S.: Acta Phys. Pol., A 131(1), 112–116 (2017)

    Article  Google Scholar 

  11. Falcinelli, S., Candori, P., Pirani, F., Vecchiocattivi, F.: Phys. Chem. Chem. Phys. 19(10), 6933–6944 (2017)

    Article  Google Scholar 

  12. Falcinelli, S., Pirani, F., Alagia, M., Schio, L., Richter, R., et al.: Chem. Phys. Lett. 666, 1–6 (2016)

    Article  Google Scholar 

  13. Falcinelli, S., Capriccioli, A., Pirani, F., Vecchiocattivi, F., Stranges, S., Martì, C., et al.: Fuel 209, 802–811 (2017)

    Article  Google Scholar 

  14. Kalogerakis, K.S., Matsiev, D., Cosby, P.C., et al.: Ann. Geophys. 36, 13–24 (2018)

    Article  Google Scholar 

  15. Sebastiani, B., Falcinelli, S.: Environments 5(3), 33 (2018)

    Article  Google Scholar 

  16. Alagia, M., Candori, P., Falcinelli, S., Lavollée, M., Pirani, F., Richter, R., Stranges, S., Vecchiocattivi, F.: J. Chem. Phys. 126(20), 201101 (2007)

    Article  Google Scholar 

  17. Alagia, M., Candori, P., Falcinelli, S., Lavollée, M., Pirani, F., Richter, R., Stranges, S., Vecchiocattivi, F.: Chem. Phys. Lett. 432, 398–402 (2006)

    Article  Google Scholar 

  18. Alagia, M., Candori, P., Falcinelli, S., Lavollée, M., Pirani, F., Richter, R., Stranges, S., Vecchiocattivi, F.: J. Phys. Chem. A 113, 14755–14759 (2009)

    Article  Google Scholar 

  19. Alagia, M., Candori, P., Falcinelli, S., Lavollèe, M., Pirani, F., Richter, R., Stranges, S., Vecchiocattivi, F.: Phys. Chem. Chem. Phys. 12, 5389–5395 (2010)

    Article  Google Scholar 

  20. Alagia, M., Candori, P., Falcinelli, S., Pirani, F., Pedrosa Mundim, M.S., Richter, R., Rosi, M., Stranges, S., Vecchiocattivi, F.: Phys. Chem. Chem. Phys. 13(18), 8245–8250 (2011)

    Article  Google Scholar 

  21. Alagia, M., Candori, P., Falcinelli, S., Mundim, M.S.P., Pirani, F., Richter, R., Rosi, M., Stranges, S., Vecchiocattivi, F.: J. Chem. Phys. 135(14), 144304 (2011)

    Article  Google Scholar 

  22. Alagia, M., Callegari, C., Candori, P., Falcinelli, S., Pirani, F., Richter, R., Stranges, S., Vecchiocattivi, F.: J. Chem. Phys. 136, 204302 (2012)

    Article  Google Scholar 

  23. Falcinelli, S., Alagia, M., Farrar, J.M., Kalogerakis, K.S., Pirani, F., Richter, R., et al.: J. Chem. Phys. 145(11), 114308 (2016)

    Article  Google Scholar 

  24. Lavollée, M.: Rev. Sci. Instr. 70, 2968 (1990)

    Article  Google Scholar 

  25. Schio, L., Li, C., Monti, S., Salén, P., Yatsyna, V., Feifel, R., Alagia, M., et al.: Phys. Chem. Chem. Phys. 17(14), 9040–9048 (2015)

    Article  Google Scholar 

  26. Falcinelli, S., Pirani, F., Alagia, M., Schio, L., Richter, R., Stranges, S., Balucani, N., Vecchiocattivi, F.: Atmosphere 7(9), 112 (2016)

    Article  Google Scholar 

  27. Falcinelli, S., Rosi, M., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Chem. Eur. J. 22(35), 12518–12526 (2016)

    Article  Google Scholar 

  28. Falcinelli, S., Rosi, M., Candori, P., Vecchiocattivi, F., Farrar, J.M., Pirani, F., Balucani, N., Alagia, M., Richter, R., Stranges, S.: The escape probability of some ions from mars and titan ionospheres. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014, Part I. LNCS, vol. 8579, pp. 554–570. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_38

    Chapter  Google Scholar 

  29. Lundqvist, M., Baltzer, P., Edvardsson, D., et al.: Phys. Rev. Lett. 75, 1058 (1995)

    Article  Google Scholar 

  30. Field, T.A., Eland, J.H.D.: Chem. Phys. Lett. 211, 436 (1993)

    Article  Google Scholar 

  31. Candori, P., Falcinelli, S., Pirani, F., Tarantelli, F., Vecchiocattivi, F.: Chem. Phys. Lett. 436, 322–326 (2007)

    Article  Google Scholar 

  32. Alagia, M., Bodo, E., Decleva, P., Falcinelli, S., Ponzi, A., Richter, R., Stranges, S.: Phys. Chem. Chem. Phys. 15(4), 1310–1318 (2013)

    Article  Google Scholar 

  33. Falcinelli, S., Bartocci, A., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Chem. Eur. J. 22(2), 764–771 (2016)

    Article  Google Scholar 

  34. Falcinelli, S., Rosi, M., Candori, P., Vecchiocattivi, F., Farrar, J.M., Kalogerakis, K.S., Pirani, F., Balucani, N., Alagia, M., Richter, R., Stranges, S.: Angular distributions of fragment ions produced by coulomb explosion of simple molecular dications of astrochemical interest. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015, Part II. LNCS, vol. 9156, pp. 291–307. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21407-8_22

    Chapter  Google Scholar 

  35. Falcinelli, S., Rosi, M., Candori, P., Farrar, J.M., Vecchiocattivi, F., Pirani, F., Balucani, N., Alagia, M., Richter, R., Stranges, S.: Planet. Space Sci. 99, 149–157 (2014)

    Article  Google Scholar 

  36. Pirani, F., Falcinelli, S., Vecchiocattivi, F., Alagia, M., Richter, R., Stranges, S.: Rendiconti Lincei Scienze Fisiche e Naturali 29(1), 179–189 (2018)

    Article  Google Scholar 

  37. Alagia, M., Candori, P., Falcinelli, S., Mundim, K.C., Mundim, M.S.P., Pirani, F., et al.: Chem. Phys. 398, 134–141 (2012)

    Article  Google Scholar 

  38. Biondini, F., Brunetti, B.G., Candori, P., De Angelis, F., Falcinelli, S., Tarantelli, F., Teixidor, M.M., Pirani, F., Vecchiocattivi, F.: J. Chem. Phys. 122(16), 164307 (2005)

    Article  Google Scholar 

  39. Biondini, F., Brunetti, B.G., Candori, P., De Angelis, F., Falcinelli, S., Tarantelli, F., Pirani, F., Vecchiocattivi, F.: J. Chem. Phys. 122(16), 164308 (2005)

    Article  Google Scholar 

  40. Zare, R.N.: Mol. Photochem. 4, 1 (1972)

    Google Scholar 

  41. Alagia, M., Brunetti, B.G., Candori, P., Falcinelli, S., Teixidor, M.M., Pirani, F., et al.: J. Chem. Phys. 120(15), 6980–6984 (2004)

    Article  Google Scholar 

  42. Alagia, M., Brunetti, B.G., Candori, P., Falcinelli, S., Teixidor, M.M., Pirani, F., et al.: J. Chem. Phys. 120(15), 6985–6991 (2004)

    Article  Google Scholar 

  43. Alagia, M., Biondini, F., Brunetti, B.G., Candori, P., Falcinelli, S., Teixidor, M.M., Pirani, F., et al.: J. Chem. Phys. 121(21), 10508–10512 (2004)

    Article  Google Scholar 

  44. Teixidor, M.M., Pirani, F., Candori, P., Falcinelli, S., Vecchiocattivi, F.: Chem. Phys. Lett. 379, 139–146 (2003)

    Article  Google Scholar 

  45. Alagia, M., Brunetti, B.G., Candori, P., et al.: J. Chem. Phys. 124(20), 204318 (2006)

    Article  Google Scholar 

  46. Pei, L., Carrascosa, E., Yang, N., Falcinelli, S., Farrar, J.M.: J. Phys. Chem. Lett. 6(9), 1684–1689 (2015)

    Article  Google Scholar 

  47. Schio, L., Li, C., Monti, S., Salen, P., Yatsyna, V., et al.: Phys. Chem. Chem. Phys. 17(14), 9040–9048 (2015)

    Article  Google Scholar 

  48. Ben Arfa, M., Lescop, B., Cherid, M., Brunetti, B., Candori, P., et al.: Chem. Phys. Lett. 308, 71–77 (1999)

    Article  Google Scholar 

  49. Brunetti, B., Candori, P., Falcinelli, S., Lescop, B., et al.: Eur. Phys. J. D 38, 21–27 (2006)

    Article  Google Scholar 

  50. Lombardi, A., Lago, N.F., Laganà, A., Pirani, F., Falcinelli, S.: A bond-bond portable approach to intermolecular interactions: simulations for N-methylacetamide and carbon dioxide dimers. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 387–400. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_30

    Chapter  Google Scholar 

  51. Falcinelli, S., et al.: Modeling the intermolecular interactions and characterization of the dynamics of collisional autoionization processes. In: Murgante, B., et al. (eds.) ICCSA 2013, Part 1. LNCS, vol. 7971. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_6

    Chapter  Google Scholar 

  52. Barone, V., Latouche, C., Skouteris, D., et al.: MNRAS Letters 453, L31–L35 (2015)

    Article  Google Scholar 

  53. Falcinelli, S., Fernandez-Alonso, F., Kalogerakis, K., Zare, R.N.: Mol. Phys. 88(3), 663–672 (1996)

    Article  Google Scholar 

  54. Alagia, M., Boustimi, M., Brunetti, B.G., Candori, P., et al.: J. Chem. Phys. 117(3), 1098–1102 (2002)

    Article  Google Scholar 

  55. Alagia, M., Furlani, F., Pirani, F., Lavollée, M., Richter, R., Stranges, S., et al.: Rendiconti Lincei Scienze Fisiche e Naturali 19, 215–221 (2008)

    Article  Google Scholar 

  56. Balucani, N., Bartocci, A., Brunetti, B., Candori, C., et al.: Chem. Phys. Lett. 546, 34–39 (2012)

    Article  Google Scholar 

  57. Skouteris, D., Balucani, N., Faginas-Lago, N., et al.: A&A 584, A76 (2015)

    Article  Google Scholar 

  58. Rosi, M., Falcinelli, S., Balucani, N., Faginas-Lago, N., Ceccarelli, C., Skouteris, D.: A theoretical study on the relevance of protonated and ionized species of methanimine and methanol in astrochemistry. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.C., Torre, C., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S. (eds.) ICCSA 2016, PArt 1. LNCS, vol. 9786, pp. 296–308. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_23

    Chapter  Google Scholar 

Download references

Acknowledgments

This work has been supported by MIUR “PRIN 2015” funds, project “STARS in the CAOS (Simulation Tools for Astrochemical Reactivity and Spectroscopy in the Cyberinfrastructure for Astrochemical Organic Species)”, Grant Number 2015F59J3R. Financial contributions from the “Fondazione Cassa di Risparmio di Perugia” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Falcinelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Falcinelli, S. et al. (2018). Double Photoionization of Simple Molecules of Astrochemical Interest. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10961. Springer, Cham. https://doi.org/10.1007/978-3-319-95165-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95165-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95164-5

  • Online ISBN: 978-3-319-95165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics