Skip to main content

Formation of Nitrogen-Bearing Organic Molecules in the Reaction NH + C2H5: A Theoretical Investigation and Main Implications for Prebiotic Chemistry in Space

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Abstract

The synthesis of nitrogen-containing organic molecules is a crucial step in prebiotic chemistry, as they are potential precursors of important biological molecules such as nucleobases and amino acids. In this respect, unsaturated species like nitriles (containing a –CN group) or imines (containing a carbon–nitrogen double bond) are particularly interesting because the presence of an unsaturated bond allows for further evolution. Interestingly, simple species belonging to both nitrile and imine families have been detected in the interstellar medium and in the upper atmosphere of Titan. In this contribution, the reaction between the imidogen radical (NH) and ethyl radical (C2H5) is investigated from a theoretical point of view to establish whether it can form product species with a novel C-N bond. According to the present electronic structure calculations of the stationary points of the C2H6N potential energy surface, the NH + C2H5 reaction is a viable route of formation of methanimine and ethanimine, that is, two N-containing molecules already detected in the interstellar medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Astrochymist - Resources for Astrochemists and Interested Bystanders. http://www.astrochymist.org. Accessed 6 Mar 2018

  2. Jaber Al-Edhari, A., Ceccarelli, C., Kahane, C., Viti, S., Balucani, N., Caux, E., Faure, A., Lefloch, B., Lique, F., Mendoza, E., Quenard, D., Wiesenfeld, L.: History of the solar-type protostar IRAS 16293-2422 as told by the cyanopolyynes. Astron. Astrophys. 597, A40 (2017)

    Article  Google Scholar 

  3. Codella, C., Ceccarelli, C., Caselli, P., Balucani, N., Barone, V., Fontani, F., Lefloch, B., Podio, L., Viti, S., Feng, S., Bachiller, R., Bianchi, E., Dulieu, F., Jiménez-Serra, I., Holdship, J., Neri, R., Pineda, J.E., Pon, A., Sims, I., Spezzano, S., Vasyunin, A.I., Alves, F., Bizzocchi, L., Bottinelli, S., Caux, E., Chacón-Tanarro, A., Choudhury, R., Coutens, A., Favre, C., Hily-Blant, P., Kahane, C., Jaber Al-Edhari, A., Laas, J., López-Sepulcre, A., Ospina, J., Oya, Y., Punanova, A., Puzzarini, C., Quenard, D., Rimola, A., Sakai, N., Skouteris, D., Taquet, V., Testi, L., Theulé, P., Ugliengo, P., Vastel, C., Vazart, F., Wiesenfeld, L., Yamamoto, S.: Seeds of Life in Space (SOLIS). II. Formamide in protostellar shocks: evidence for gas-phase formation. Astron. Astrophys. 605, 7 (2017)

    Article  Google Scholar 

  4. Caselli, P., Ceccarelli, C.: Our astrochemical heritage. Astron. Astrophys. Rev. 20, 56 (2012)

    Article  Google Scholar 

  5. Ehrenfreund, P., Charnley, S.B.: Organic molecules in the interstellar medium, comets, and meteorites: a voyage from dark clouds to the early earth. Ann. Rev. Astron. Astrophys. 38, 427–483 (2000)

    Article  Google Scholar 

  6. Balucani, N.: Elementary reactions of N atoms with hydrocarbons: first steps towards the formation of prebiotic N-containing molecules in planetary atmospheres. Chem. Soc. Rev. 41, 5473–5483 (2012)

    Article  Google Scholar 

  7. Balucani, N.: Elementary reactions and their role in gas-phase prebiotic chemistry. Int. J. Mol. Sci. 10, 2304–2335 (2009)

    Article  Google Scholar 

  8. Balucani, N.: Gas-phase prebiotic chemistry in extraterrestrial environments. In: Corbett, I.F. (ed.) Highlights of Astronomy, Proceedings of the International Astronomical Union, vol. 5, no. H15. Cambridge University Press (2009)

    Article  Google Scholar 

  9. Balucani, N.: Nitrogen fixation by photochemistry in the atmosphere of Titan and implications for prebiotic chemistry. In: Trigo-Rodriguez, J., Raulin, F., Muller, C., Nixon, C. (eds.) The Early Evolution of the Atmospheres of Terrestrial Planets, Astrophysics and Space Science Proceedings, vol. 35. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5191-4_12

    Chapter  Google Scholar 

  10. Godfrey, P.D., Brown, R.D., Robinson, B.J., Sinclair, M.W.: Discovery of interstellar methanimine (formaldimine). Astrophys. Lett. 13, 119 (1973)

    Google Scholar 

  11. Vuitton, V., Yelle, R.V., Anicich, V.G.: The nitrogen chemistry of Titan’s upper atmosphere revealed. Astrophys. J. 647, L175–L178 (2006)

    Article  Google Scholar 

  12. Casavecchia, P., Balucani, N., Cartechini, L., Capozza, G., Bergeat, A., Volpi, G.G.: Crossed beam studies of elementary reactions of N and C atoms and CN radicals of importance in combustion. Faraday Discuss. 119, 27–49 (2001)

    Article  Google Scholar 

  13. Balucani, N., Bergeat, A., Cartechini, L., Volpi, G.G., Casavecchia, P., Skouteris, D., Rosi, M.: Combined crossed molecular beam and theoretical studies of the N(2D) + CH4 reaction and implications for atmospheric models of Titan. J. Phys. Chem. A 113, 11138–11152 (2009)

    Article  Google Scholar 

  14. Balucani, N., Leonori, F., Petrucci, R., Stazi, M., Skouteris, D., Rosi, M., Casavecchia, P.: Formation of nitriles and imines in the atmosphere of Titan: combined crossed-beam and theoretical studies on the reaction dynamics of excited nitrogen atoms N(2D) with ethane. Faraday Discuss. 147, 189–216 (2010)

    Article  Google Scholar 

  15. Redondo, P., Pauzat, F., Ellinger, Y.: Theoretical survey of the NH + CH3 potential energy surface in relation to Titan atmospheric chemistry. Planet. Space Sci. 54, 181–187 (2006)

    Article  Google Scholar 

  16. Lavvas, P.P., Coustenis, A., Vardavas, I.M.: Coupling photochemistry with haze formation in Titan’s atmosphere. Part II: results and validation with Cassini/Huygens data. Planet. Space Sci. 56, 67–99 (2008)

    Article  Google Scholar 

  17. Loison, J.C., Hébrard, E., Dobrijevic, M., Hickson, K.M., Caralp, F., Hue, V., Gronoff, G., Venot, O., Bénilan, Y.: The neutral photochemistry of nitriles, amines and imines in the atmosphere of Titan. Icarus 247, 218–247 (2015)

    Article  Google Scholar 

  18. Bernstein, M.P., Sandford, S.A., Allamandola, L.J., Chang, S., Scharberg, M.A.: Organic compounds produced by photolysis of realistic interstellar and cometary ice analogs containing methanol. Astrophys. J. 454, 327–344 (1995)

    Article  Google Scholar 

  19. Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Skouteris, D.: A Theoretical study of formation routes and dimerization of methanimine and implications for the aerosols formation in the upper atmosphere of Titan. In: Murgante, B., Misra, S., Carlini, M., Torre, Carmelo M., Nguyen, H.-Q., Taniar, D., Apduhan, Bernady O., Gervasi, O. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 47–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_4

    Chapter  Google Scholar 

  20. Skouteris, D., Balucani, N., Faginas-Lago, N., Falcinelli, S., Rosi, M.: Dimerization of methanimine and its charged species in the atmosphere of Titan and interstellar/cometary ice analogs. Astron. Astrophys. 584, A76 (2015)

    Article  Google Scholar 

  21. Lovas, F.J., Hollis, J.M., Remijan, A.J., Jewell, P.R.: Detection of ketenimine (CH2CNH) in sagittarius B2(N) hot cores. Astrophys. J. 645, L137–L140 (2006)

    Article  Google Scholar 

  22. Loomis, R.A., Zaleski, D.P., Steber, A.L., Neill, J.L., Muckle, M.T., Harris, B.J., Hollis, J.M., Jewell, P.R., Lattanzi, V., Lovas, F.J., Martinez Jr., O., McCarthy, M.C., Remijan, A.J., Pate, B.H., Corby, J.F.: The detection of interstellar ethanimine (CH3CHNH) from observations taken during the GBT PRIMOS survey. Astrophys. J. 765, L9 (2013)

    Article  Google Scholar 

  23. Zaleski, D.P., Seifert, N.A., Steber, A.L., Muckle, M.T., Loomis, R.A., Corby, J.F., Martinez Jr., O., Crabtree, K.N., Jewell, P.R., Hollis, J.M., Lovas, F.J., Vasquez, D., Nyiramahirwe, J., Sciortino, N., Johnson, K., McCarthy, M.C., Remijan, A.J., Pate, B.H.: Detection of e-cyanomethanimine toward sagittarius B2(N) in the green bank telescope PRIMOS survey. Astrophys. J. 765, L10 (2013)

    Article  Google Scholar 

  24. Dutuit, O., Carrasco, N., Thissen, R., Vuitton, V., Alcaraz, C., Pernot, P., Balucani, N., Casavecchia, P., Canosa, A., Le Picard, S., Loison, J.-C., Herman, Z., Zabka, J., Ascenzi, D., Tosi, P., Franceschi, P., Price, S.D., Lavvas, P.: Critical review of N, N+, N2+, N++ and N2++ main production processes and reactions of relevance to Titan’s atmosphere. Astrophys. J. Suppl. Ser. 204, 20 (2013)

    Article  Google Scholar 

  25. Balucani, N., Asvany, O., Chang, A.H.H., Lin, S.H., Lee, Y.T., Kaiser, R.I., Bettinger, H.F., Schleyer, P.V.R., Schaefer III, H.F.: Crossed beam reaction of cyano radicals with hydrocarbon molecules. I. Chemical dynamics of cyanobenzene (C6H5CN; X 1A1) and perdeutero cyanobenzene (C6D5CN; X 1A1) formation from reaction of CN (X 2Σ+) with benzene C6H6 (X 1A1g), and d6-benzene C6D6 (X 1A1g). J. Chem. Phys. 111, 7457–7471 (1999)

    Article  Google Scholar 

  26. Balucani, N., Asvany, O., Chang, A.H.H., Lin, S.H., Lee, Y.T., Kaiser, R.I., Bettinger, H.F., Schleyer, P.V.R., Schaefer III, H.F.: Crossed beam reaction of cyano radicals with hydrocarbon molecules. II. Chemical dynamics of 1-cyano-1-methylallene (CNCH3CCCH2; X 1A’) formation from reaction of CN (X 2Σ+) with dimethylacetylene CH3CCCH3 (X 1A1′). J. Chem. Phys. 111, 7472–7479 (1999)

    Article  Google Scholar 

  27. Huang, L.C.L., Balucani, N., Lee, Y.T., Kaiser, R.I., Osamura, Y.: Crossed beam reaction of the cyano radical, CN (X 2Σ+), with methylacetylene, CH3CCH (X1A1): Observation of cyanopropyne, CH3CCCN (X1A1), and cyanoallene, H2CCCHCN (X1A′). J. Chem. Phys. 111, 2857–2860 (1999)

    Article  Google Scholar 

  28. Balucani, N., Asvany, O., Chang, A.H.H., Lin, S.H., Lee, Y.T., Kaiser, R.I., Osamura, Y.: Crossed beam reaction of cyano radicals with hydrocarbon molecules. III. Chemical dynamics of vinylcyanide (C2H3CN; X 1A′) formation from reaction of CN (X 2Σ+) with ethylene, C2H4 (X 1Ag). J. Chem. Phys. 113, 8643–8655 (2000)

    Article  Google Scholar 

  29. Balucani, N., Asvany, O., Kaiser, R.I., Osamura, Y.: Formation of three C4H3N isomers from the reaction of CN(X2Σ+) with allene, H2CCCH2 (X 1A1), and methylacetylene, CH3CCH (X 1A1): a combined crossed beam and ab initio study. J. Phys. Chem. A 106, 4301–4311 (2002)

    Article  Google Scholar 

  30. Leonori, F., Hickson, K.M., Le Picard, S.D., Wang, X., Petrucci, R., Foggi, P., Balucani, N., Casavecchia, P.: Crossed-beam universal-detection reactive scattering of radical beams characterized by laser-induced fluorescence: the case of C2 and CN. Mol. Phys. 108, 1097–1113 (2010)

    Article  Google Scholar 

  31. Balucani, N., Leonori, F., Petrucci, R., Wang, X., Casavecchia, P., Skouteris, D., Albernaz, A.F., Gargano, R.: A combined crossed molecular beams and theoretical study of the reaction CN + C2H4. Chem. Phys. 449, 34–42 (2015)

    Article  Google Scholar 

  32. Leonori, F., Petrucci, R., Wang, X., Casavecchia, P., Balucani, N.: A crossed beam study of the reaction CN + C2H4 at a high collision energy: the opening of a new reaction channel. Chem. Phys. Lett. 553, 1–5 (2012)

    Article  Google Scholar 

  33. Sleiman, C., El Dib, G., Rosi, M., Skouteris, D., Balucani, N., Canosa, A.: Low temperature kinetics and theoretical studies of the reaction CN + CH3NH2: a potential source of cyanamide and methyl cyanamide in the interstellar medium. Phys. Chem. Chem. Phys. 20, 5478–5489 (2018)

    Article  Google Scholar 

  34. Kaiser, R.I., Balucani, N.: The formation of nitriles in hydrocarbon rich atmospheres of planets and their satellites: laboratory investigations by the crossed molecular beam technique. Acc. Chem. Res. 34, 699 (2001)

    Article  Google Scholar 

  35. Balucani, N., Asvany, O., Huang, L.C.L., Lee, Y.T., Kaiser, R.I., Osamura, Y., Bettinger, H.F.: Neutral-neutral reactions in the interstellar medium iii: formation of nitriles via reaction of cyano radicals, CN(X2Σ+), with unsaturated hydrocarbons. Astrophys. J. 545, 892 (2000)

    Article  Google Scholar 

  36. Woon, D.E.: Pathways to glycine and other amino acids in ultraviolet-irradiated astrophysical ices determined via quantum chemical modelling. Astrophys. J. 571, L177–L180 (2002)

    Article  Google Scholar 

  37. Quan, D., Herbst, E., Corby, J.F., Durr, A., Hassel, G.: Chemical simulations of prebiotic molecules: interstellar ethanimine isomers. Astrophys. J. 824, 129–142 (2016)

    Article  Google Scholar 

  38. Sil, M., Gorai, P., Das, A., Bhat, B., Etim, E.E., Chakrabarti, S.K.: Chemical modeling for predicting the abundances of certain aldimines and imines in hot cores. Astrophys. J. 853, 139–158 (2018)

    Article  Google Scholar 

  39. Vazart, F., Latouche, C., Skouteris, D., Balucani, N., Barone, V.: Cyanomethanimine isomers in cold interstellar clouds: insights from electronic structure and kinetic calculations. Astrophys. J. 810, 111 (2015)

    Article  Google Scholar 

  40. Stief, L.J., Nesbitt, F.L., Payne, W.A., Kuo, S.C., Tao, W., Klemm, R.B.: Rate constant and reaction channels for the reaction of atomic nitrogen with the ethyl radical. J. Chem. Phys. 102, 5309–5317 (1995)

    Article  Google Scholar 

  41. Yang, Y., Zhang, W., Pei, S., Shao, J., Huang, W., Gao, X.: Theoretical study on the mechanism of the N(4S) + C2H5 reaction. J. Mol. Struc.: THEOCHEM 725, 133–138 (2005)

    Article  Google Scholar 

  42. de Petris, G., Cacace, F., Cipollini, R., Cartoni, A., Rosi, M., Troiani, A.: Experimental detection of theoretically predicted N2CO. Angew. Chem. 117, 466–469 (2005)

    Article  Google Scholar 

  43. Becke, A.D.: Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  Google Scholar 

  44. Stephens, P.J., Devlin, F.J., Chablowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994)

    Article  Google Scholar 

  45. Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu. Rev. Phys. Chem. 32, 359–401 (1981)

    Article  Google Scholar 

  46. Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: Quadratic configuration interaction. A general technique for determining electron correlation energies. Chem. Phys. Lett. 157, 479–483 (1989)

    Article  Google Scholar 

  47. Olsen, J., Jorgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration–interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104, 8007–8015 (1996)

    Article  Google Scholar 

  48. Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Article  Google Scholar 

  49. Peng, C., Schlegel, H.B.: Combining synchronous transit and Quasi-Newton methods to find transition states. Isr. J. Chem. 33, 449–454 (1993)

    Article  Google Scholar 

  50. Peng, C., Ayala, P.Y., Schlegel, H.B., Frisch, M.J.: Using redundant internal coordinates to optimize geometries and transition states. J. Comput. Chem. 17, 49–56 (1996)

    Article  Google Scholar 

  51. Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90, 2154–2161 (1989)

    Article  Google Scholar 

  52. Gonzalez, C., Schlegel, H.B.: Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523–5527 (1990)

    Article  Google Scholar 

  53. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cosi, M., Rega, N., Milla, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford (2009)

    Google Scholar 

  54. Flükiger, P., Lüthi, H.P., Portmann, S., Weber, J.: MOLEKEL 4.3, Swiss Center for Scientific Computing, Manno, Switzerland, 2000–2002

    Google Scholar 

  55. Portmann, S., Lüthi, H.P.: MOLEKEL: an interactive molecular graphics tool. Chimia 54, 766–769 (2000)

    Google Scholar 

  56. Levine, R.D.: Molecular Reaction Dynamics. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  57. Rimola, A., Sodupe, M., Ugliengo, P.: Computational study of interstellar glycine formation occurring at radical surfaces of water-ice dust particles. Astrophys. J. 754, 24 (2012)

    Article  Google Scholar 

  58. Rimola, A., Sodupe, M., Ugliengo, P.: In silico study of the interstellar prebiotic formation and delivery of glycine. Rend. Fis. Acc. Lincei 22, 137 (2011)

    Article  Google Scholar 

  59. Koch, D.M., Toubin, C., Peslherbe, G.H., Hynes, H.T.: A theoretical study of the formation of the aminoacetonitrile precursor of glycine on icy grain mantles in the interstellar medium. J. Phys. Chem. C 112, 2972–2980 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by MIUR “PRIN 2015” funds, project “STARS in the CAOS (Simulation Tools for Astrochemical Reactivity and Spectroscopy in the Cyberinfrastructure for Astrochemical Organic Species)”, Grant Number 2015F59J3R. DS wishes to thank the Italian Ministero dell’Istruzione, Università e Ricerca (MIUR_FFABR17_SKOUTERIS) and the Scuola Normale Superiore (SNS_RB_SKOUTERIS) for financial support. Partially supported also by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program, for the Project “The Dawn of Organic Chemistry” (DOC), grant agreement No 741002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzio Rosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosi, M., Skouteris, D., Casavecchia, P., Falcinelli, S., Ceccarelli, C., Balucani, N. (2018). Formation of Nitrogen-Bearing Organic Molecules in the Reaction NH + C2H5: A Theoretical Investigation and Main Implications for Prebiotic Chemistry in Space. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10961. Springer, Cham. https://doi.org/10.1007/978-3-319-95165-2_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95165-2_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95164-5

  • Online ISBN: 978-3-319-95165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics