Skip to main content

Gini Based Learning for the Classification of Alzheimer’s Disease and Features Identification with Automatic RGB Segmentation Algorithm

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10961))

Included in the following conference series:

  • 2129 Accesses

Abstract

Magnetic Resonance Image segmentation is the process of partitioning brain data, which is regarded as a highly challenging task for medical applications, particularly in Alzheimer’s Disease (AD). In this study, we have developed a new automatic segmentation algorithm which can be seen as a novel decision making technique that can help diagnose decision rules studying magnetic resonance images of the brain. The proposed work consist of a total of five stages: (i) the preprocessing stage that involves the use of dilation and erosion methods via gray-scale MRI for brain extraction (ii) the application of multi-level thresholding using Otsu’s method with a threshold value of (\({\mu _{i}}> 15\) pixels) to determine the RGB color segment values (iii) the calculation of area detection (RGB segment scores) by applying our newly proposed automatic RGB Color Segment Score Algorithm to the predetermined RGB color segments (iv) creating the AD_dataset using the pixels of the lesion areas calculated via MR imaging (v) the post-processing stage that involves the application of Classification and Regression Tree (CART) algorithm to the AD_dataset. This study aims at contributing to the literature with the decision rules derived from the application of CART algorithm to the calculated RGB segment scores using our newly proposed automatic RGB Color Segment Score Algorithm in terms of the successful classification of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beham, M.P., Gurulakshmi, A.B.: Morphological image processing approach on the detection of tumor and cancer cells. In: 2012 International Conference on Devices, Circuits and Systems (ICDCS), pp. 350–354 (2012)

    Google Scholar 

  2. Mayasi, Y., Helenius, J., McManus, D.D., Goddeau, R.P., Jun-OConnell, A.H., Moonis, M., Henninger, N.: Atrial fibrillation is associated with anterior predominant white matter lesions in patients presenting with embolic stroke. J. Neurol. Neurosurg. Psychiatry 89(1), 6–13 (2018)

    Article  Google Scholar 

  3. Karaca, Y., Cattani, C., Moonis, M., Bayrak, Ş.: Stroke subtype clustering by multifractal bayesian denoising with Fuzzy C Means and K-Means algorithms. Complexity 2018, 1–15 (2018)

    Article  Google Scholar 

  4. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M.: Clinical diagnosis of Alzheimer’s disease report of the NINCDSADRDA work groupunder the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 34(7), 939–939 (1984)

    Article  Google Scholar 

  5. Khachaturian, Z.S.: Diagnosis of Alzheimer’s disease. Arch. Neurol. 42(11), 1097–1105 (1985)

    Article  Google Scholar 

  6. Dubois, B., Feldman, H.H., Jacova, C., DeKosky, S.T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., Meguro, K.: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDSADRDA criteria. Lancet Neurol. 6(8), 734–746 (2007)

    Article  Google Scholar 

  7. Salvatore, C., Castiglioni, I.: A wrapped multi label classifier for the automatic diagnosis and prognosis of Alzheimers disease. J. Neurosci. Methods 302, 55–65 (2018)

    Article  Google Scholar 

  8. Gad, A.R., Hassan, N.H., Seoud, R.A.A., Nassef, T.M.: Automatic machine learning classification of Alzheimer’s disease based on selected slices from 3D magnetic resonance imagining. Age 67, 10–5 (2017)

    Google Scholar 

  9. Vemuri, P., Gunter, J.L., Senjem, M.L., Whitwell, J.L., Kantarci, K., Knopman, D.S., Bradley, F.B., Ronald, C.P., Jack Jr., C.R.: Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage 39(3), 1186–1197 (2008)

    Article  Google Scholar 

  10. Chupin, M., Grardin, E., Cuingnet, R., Boutet, C., Lemieux, L., Lehricy, S., Benali, H., Garnero, L., Colliot, O.: Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19(6), 579–587 (2009)

    Article  Google Scholar 

  11. Kloppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox, N.C., Jack Jr., C.R., Ashburner, J., Frackowiak, R.S.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131(3), 681–689 (2008)

    Article  Google Scholar 

  12. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Alzheimer’s disease neuroimaging initiative. automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2), 766–781 (2011)

    Article  Google Scholar 

  13. Davatzikos, C., Fan, Y., Wu, X., Shen, D., Resnick, S.M.: Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol. Aging 29(4), 514–523 (2008)

    Article  Google Scholar 

  14. Cheng, D., Liu, M.: Classification of Alzheimer’s disease by cascaded convolutional neural networks using PET images. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 106–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_13

    Chapter  Google Scholar 

  15. Zhu, X., Suk, H.I., Lee, S.W., Shen, D.: Canonical feature selection for joint regression and multi-class identification in Alzheimer’s disease diagnosis. Brain Imaging Behav. 10(3), 818–828 (2016)

    Article  Google Scholar 

  16. Zhang, D., Shen, D.: Alzheimer’s disease neuroimaging initiative: multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59(2), 895–907 (2012)

    Article  MathSciNet  Google Scholar 

  17. Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., Feng, D.: Early diagnosis of Alzheimer’s disease with deep learning. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 1015–1018 (2014)

    Google Scholar 

  18. Zhang, Y., Wang, S., Sui, Y., Yang, M., Liu, B., Cheng, H., Sun J., Jia, W., Phillips, P., Gorriz, J. M.: Multivariate approach for alzheimers disease detection using stationary wavelet entropy and predator-prey particle swarm optimization. J. Alzheimer’s Dis. 1–15 (2017, preprint)

    Google Scholar 

  19. http://www.oasis-brains.org/

  20. Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 993–1000 (2006)

    Google Scholar 

  21. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)

    Article  Google Scholar 

  22. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recogn. 26(9), 1277–1294 (1993)

    Article  Google Scholar 

  23. Kurugollu, F., Sankur, B., Harmanci, A.E.: Color image segmentation using histogram multithreshing and fusion. Image Vis. Comput. 19(13), 915–928 (2001)

    Article  Google Scholar 

  24. Zhang, Y., Wang, S., Phillips, P., Dong, Z., Ji, G., Yang, J.: Detection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC. Biomed. Sig. Process. Control 21, 58–73 (2015)

    Article  Google Scholar 

  25. Kumar, N., Alam, K., Siddiqi, A.H.: Wavelet transform for classification of EEG signal using SVM and ANN. Biomed. Pharmacol. J. 10(4), 2061–2069 (2017)

    Article  Google Scholar 

  26. Crawford, S.L.: Extensions to the CART algorithm. Int. J. Man-Mach. Stud. 31(2), 197–217 (1989)

    Article  Google Scholar 

  27. Sathyadevi, G.: Application of CART algorithm in hepatitis disease diagnosis. In: 2011 International Conference on Recent Trends in Information Technology (ICRTIT), pp. 1283–1287 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeliz Karaca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karaca, Y., Moonis, M., Siddiqi, A.H., Turan, B. (2018). Gini Based Learning for the Classification of Alzheimer’s Disease and Features Identification with Automatic RGB Segmentation Algorithm. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10961. Springer, Cham. https://doi.org/10.1007/978-3-319-95165-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95165-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95164-5

  • Online ISBN: 978-3-319-95165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics