Abstract
Magnetic Resonance Image segmentation is the process of partitioning brain data, which is regarded as a highly challenging task for medical applications, particularly in Alzheimer’s Disease (AD). In this study, we have developed a new automatic segmentation algorithm which can be seen as a novel decision making technique that can help diagnose decision rules studying magnetic resonance images of the brain. The proposed work consist of a total of five stages: (i) the preprocessing stage that involves the use of dilation and erosion methods via gray-scale MRI for brain extraction (ii) the application of multi-level thresholding using Otsu’s method with a threshold value of (\({\mu _{i}}> 15\) pixels) to determine the RGB color segment values (iii) the calculation of area detection (RGB segment scores) by applying our newly proposed automatic RGB Color Segment Score Algorithm to the predetermined RGB color segments (iv) creating the AD_dataset using the pixels of the lesion areas calculated via MR imaging (v) the post-processing stage that involves the application of Classification and Regression Tree (CART) algorithm to the AD_dataset. This study aims at contributing to the literature with the decision rules derived from the application of CART algorithm to the calculated RGB segment scores using our newly proposed automatic RGB Color Segment Score Algorithm in terms of the successful classification of AD.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beham, M.P., Gurulakshmi, A.B.: Morphological image processing approach on the detection of tumor and cancer cells. In: 2012 International Conference on Devices, Circuits and Systems (ICDCS), pp. 350–354 (2012)
Mayasi, Y., Helenius, J., McManus, D.D., Goddeau, R.P., Jun-OConnell, A.H., Moonis, M., Henninger, N.: Atrial fibrillation is associated with anterior predominant white matter lesions in patients presenting with embolic stroke. J. Neurol. Neurosurg. Psychiatry 89(1), 6–13 (2018)
Karaca, Y., Cattani, C., Moonis, M., Bayrak, Ş.: Stroke subtype clustering by multifractal bayesian denoising with Fuzzy C Means and K-Means algorithms. Complexity 2018, 1–15 (2018)
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M.: Clinical diagnosis of Alzheimer’s disease report of the NINCDSADRDA work groupunder the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 34(7), 939–939 (1984)
Khachaturian, Z.S.: Diagnosis of Alzheimer’s disease. Arch. Neurol. 42(11), 1097–1105 (1985)
Dubois, B., Feldman, H.H., Jacova, C., DeKosky, S.T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., Meguro, K.: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDSADRDA criteria. Lancet Neurol. 6(8), 734–746 (2007)
Salvatore, C., Castiglioni, I.: A wrapped multi label classifier for the automatic diagnosis and prognosis of Alzheimers disease. J. Neurosci. Methods 302, 55–65 (2018)
Gad, A.R., Hassan, N.H., Seoud, R.A.A., Nassef, T.M.: Automatic machine learning classification of Alzheimer’s disease based on selected slices from 3D magnetic resonance imagining. Age 67, 10–5 (2017)
Vemuri, P., Gunter, J.L., Senjem, M.L., Whitwell, J.L., Kantarci, K., Knopman, D.S., Bradley, F.B., Ronald, C.P., Jack Jr., C.R.: Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage 39(3), 1186–1197 (2008)
Chupin, M., Grardin, E., Cuingnet, R., Boutet, C., Lemieux, L., Lehricy, S., Benali, H., Garnero, L., Colliot, O.: Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19(6), 579–587 (2009)
Kloppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox, N.C., Jack Jr., C.R., Ashburner, J., Frackowiak, R.S.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131(3), 681–689 (2008)
Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Alzheimer’s disease neuroimaging initiative. automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2), 766–781 (2011)
Davatzikos, C., Fan, Y., Wu, X., Shen, D., Resnick, S.M.: Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol. Aging 29(4), 514–523 (2008)
Cheng, D., Liu, M.: Classification of Alzheimer’s disease by cascaded convolutional neural networks using PET images. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 106–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_13
Zhu, X., Suk, H.I., Lee, S.W., Shen, D.: Canonical feature selection for joint regression and multi-class identification in Alzheimer’s disease diagnosis. Brain Imaging Behav. 10(3), 818–828 (2016)
Zhang, D., Shen, D.: Alzheimer’s disease neuroimaging initiative: multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59(2), 895–907 (2012)
Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., Feng, D.: Early diagnosis of Alzheimer’s disease with deep learning. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 1015–1018 (2014)
Zhang, Y., Wang, S., Sui, Y., Yang, M., Liu, B., Cheng, H., Sun J., Jia, W., Phillips, P., Gorriz, J. M.: Multivariate approach for alzheimers disease detection using stationary wavelet entropy and predator-prey particle swarm optimization. J. Alzheimer’s Dis. 1–15 (2017, preprint)
Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 993–1000 (2006)
Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)
Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recogn. 26(9), 1277–1294 (1993)
Kurugollu, F., Sankur, B., Harmanci, A.E.: Color image segmentation using histogram multithreshing and fusion. Image Vis. Comput. 19(13), 915–928 (2001)
Zhang, Y., Wang, S., Phillips, P., Dong, Z., Ji, G., Yang, J.: Detection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC. Biomed. Sig. Process. Control 21, 58–73 (2015)
Kumar, N., Alam, K., Siddiqi, A.H.: Wavelet transform for classification of EEG signal using SVM and ANN. Biomed. Pharmacol. J. 10(4), 2061–2069 (2017)
Crawford, S.L.: Extensions to the CART algorithm. Int. J. Man-Mach. Stud. 31(2), 197–217 (1989)
Sathyadevi, G.: Application of CART algorithm in hepatitis disease diagnosis. In: 2011 International Conference on Recent Trends in Information Technology (ICRTIT), pp. 1283–1287 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Karaca, Y., Moonis, M., Siddiqi, A.H., Turan, B. (2018). Gini Based Learning for the Classification of Alzheimer’s Disease and Features Identification with Automatic RGB Segmentation Algorithm. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10961. Springer, Cham. https://doi.org/10.1007/978-3-319-95165-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-95165-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95164-5
Online ISBN: 978-3-319-95165-2
eBook Packages: Computer ScienceComputer Science (R0)