Abstract
We present a method for automatic assessment of perceived walkability by pedestrans, using a machine learning technique with deep convolutional neural networks (CNNs) trained on a dataset of georeferenced street-level images obtained from Google Street View. On a dataset of more than 17,000 human-assessed images used for training, validation and testing of CNN, out method yields an accuracy of 78% of correct and 99% of correct or 1-class-off predictions. These are quite promising, even encouraging results, paving the way for seamless large-scale applications of perceived walkability assessment on large metropolitan areas, and for a mass assessment and comparisons of walkability over many cities across regions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Speck, J.: Walkable City. Farrar, Straus and Giroux, New York (2012)
Talen, E., Koschinsky, J.: The walkable neighborhood: a literature review. Int. J. Sustain. Land Use Urban Plan. 1, 42–63 (2013)
Forsyth, A.: What is a walkable place? The walkability debate in urban design. Urban Des. Int. 20, 274–292 (2015)
Cervero, R., Duncan, M.: Walking, bicycling, and urban landscapes: evidence from the San Francisco bay area. Am. J. Public Health 93, 1478–1483 (2003)
Livi Smith, A., Clifton, K.J.: Issues and methods in capturing pedestrian behaviours, attitudes and perceptions: experiences with a community based walkability survey. In: Transportation Research Board, Annual Meeting (2004)
Porta, S., Renne, J.L.: Linking urban design to sustainability: formal indicators of social urban sustainability field in perth, Western Australia. Urban Des. Int. 10, 51–64 (2005)
Frank, L.D., Sallis, J.F., Conway, T.L., Chapman, J.E., Saelens, B.E., Bachman, W.: Many pathways from land use to health. associations between neighborhood walkability and active transportation, body mass index, and air quality. J. Am. Plan. Assoc. 72, 75–87 (2006)
Saelens, B.E., Handy, S.L.: Built environment correlates of walking: a review. Med. Sci. Sports Exerc. 40, 550–566 (2008)
Ewing, R., Cervero, R.: Travel and the built environment: a meta-analysis. J. Am. Plan. Assoc. 76, 265–294 (2010)
Maghelal, P.K., Capp, C.J.: Walkability: a review of existing pedestrian indices. URISA J. 23, 5–19 (2011)
Sugiyama, T., Neuhaus, M., Cole, R., Giles-Corti, B., Owen, N.: Destination and route attributes associated with adults walking: a review. Med. Sci. Sports Exerc. 44, 1275–1286 (2012)
Páez, A., Moniruzzamana, M., Bourbonnaisb, P.L., Morency, C.: Developing a web-based accessibility calculator prototype for the greater montreal area. Transp. Res. Part A: Policy Pract. 58, 103–115 (2013)
Blecic, I., Cecchini, A., Congiu, T., Fancello, G., Trunfio, G.A.: Evaluating walkability: a capability-wise planning and design support system. Int. J. Geogr. Inf. Sci. 29, 1350–1374 (2015)
Vale, D.S., Saraiva, M., Pereira, M.: Active accessibility: a review of operational measures of walking and cycling accessibility. J. Transp. Land Use 9, 209–235 (2016)
Blečić, I., Canu, D., Cecchini, A., Congiu, T., Fancello, G.: Factors of perceived walkability: a pilot empirical study. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9789, pp. 125–137. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42089-9_9
Blečić, I., Cecchini, A., Canu, D., Cappai, A., Congiu, T., Fancello, G.: Evaluating the effect of urban intersections on walkability. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9789, pp. 138–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42089-9_10
Blecic, I., Cecchini, A., Trunfio, G.A.: Computer-aided drafting of urban designs for walkability. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 695–709. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62401-3_51
Blecic, I., Canu, D., Cecchini, A., Congiu, T., Fancello, G.: Walkability and street intersections in rural-urban fringes: a decision aiding evaluation procedure. Sustainability 9, 883 (2017)
Blečić, I., Cecchini, A., Congiu, T., Fancello, G., Trunfio, G.A.: Walkability explorer: an evaluation and design support tool for walkability. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014. LNCS, vol. 8582, pp. 511–521. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09147-1_37
Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 487–495. Curran Associates Inc. (2014)
Salesses, P., Schechtner, K., Hidalgo, C.A.: The collaborative image of the city: mapping the inequality of urban perception. PLoS ONE 8, e68400 (2013)
Naik, N., Philipoom, J., Raskar, R., Hidalgo, C.: Streetscore - predicting the perceived safety of one million streetscapes. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. CVPRW 2014, Washington, DC, USA, pp. 793–799. IEEE Computer Society (2014)
Herbrich, R., Minka, T., Graepel, T.: Trueskill™: a Bayesian skill rating system. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 569–576. MIT Press (2007)
Ordonez, V., Berg, T.L.: Learning high-level judgments of urban perception. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 494–510. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_32
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: A deep convolutional activation feature for generic visual recognition. CoRR abs/1310.1531 (2013)
Porzi, L., Rota Bulò, S., Lepri, B., Ricci, E.: Predicting and understanding urban perception with convolutional neural networks. In: Proceedings of the 23rd ACM International Conference on Multimedia, MM 2015, pp. 139–148. ACM, New York (2015)
Dubey, A., Naik, N., Parikh, D., Raskar, R., Hidalgo, C.A.: Deep learning the city: quantifying urban perception at a global scale. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 196–212. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_12
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)
Liu, L., Silva, E.A., Wu, C., Wang, H.: A machine learning-based method for the large-scale evaluation of the qualities of the urban environment. Comput. Environ. Urban Syst. 65, 113–125 (2017)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, ICCV 1999, Washington, DC, USA, vol. 2, pp. 1150–1157. IEEE Computer Society (1999)
Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Washington, DC, USA, pp. 1717–1724. IEEE Computer Society (2014)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2018). https://doi.org/10.1109/TPAMI.2017.2723009
Krasin, I., Duerig, T., Alldrin, N., Ferrari, V., Abu-El-Haija, S., Kuznetsova, A., Rom, H., Uijlings, J., Popov, S., Veit, A., Belongie, S., Gomes, V., Gupta, A., Sun, C., Chechik, G., Cai, D., Feng, Z., Narayanan, D., Murphy, K.: OpenImages: a public dataset for large-scale multi-label and multi-class image classification (2017). https://github.com/openimages
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates Inc. (2012)
Seresinhe, C.I., Preis, T., Moat, H.S.: Using deep learning to quantify the beauty of outdoor places. R. Soc. Open Sci. 4, 170170 (2017)
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115, 211–252 (2015)
Lin, M., Chen, Q., Yan, S.: Network in network. CoRR abs/1312.4400 (2013)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)
Crammer, K., Singer, Y.: Pranking with ranking. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 641–647. MIT Press (2002)
da Costa, J.P., Cardoso, J.S.: Classification of ordinal data using neural networks. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 690–697. Springer, Heidelberg (2005). https://doi.org/10.1007/11564096_70
Gutirrez, P.A., Prez-Ortiz, M., Snchez-Monedero, J., Fernndez-Navarro, F., Hervs-Martnez, C.: Ordinal regression methods: survey and experimental study. IEEE Trans. Knowl. Data Eng. 28, 127–146 (2016)
Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras
Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). tensorow.org
Zeiler, M.D.: ADADELTA: an adaptive learning rate method. CoRR abs/1212.5701 (2012)
Acknowledgements
This study was supported by the research grants for the projects: “Healthy Cities and Smart Territories” (2016/17) funded by Fondazione di Sardegna and the Autonomous Region of Sardinia and “Large Scale Optimization of Computationally Expensive Objective Functions” funded by Fondazione di Sardegna (2015).
We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Blečić, I., Cecchini, A., Trunfio, G.A. (2018). Towards Automatic Assessment of Perceived Walkability. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10962. Springer, Cham. https://doi.org/10.1007/978-3-319-95168-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-95168-3_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95167-6
Online ISBN: 978-3-319-95168-3
eBook Packages: Computer ScienceComputer Science (R0)