Skip to main content

The Effects of Loss of Orthogonality on Large Scale Numerical Computations

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10962))

Included in the following conference series:

Abstract

Many useful large sparse matrix algorithms are based on orthogonality, but for efficiency this orthogonality is often obtained via short term recurrences. This can lead to both loss of orthogonality and loss of linear independence of computed vectors, yet with well designed algorithms high accuracy can still be obtained. Here we discuss a nice theoretical indicator of loss of orthogonality and linear independence and show how it leads to a related higher dimensional orthogonality that can be used to analyze and prove the effectiveness of such algorithms. We illustrate advantages and shortcomings of such algorithms with Cornelius Lanczos’ Hermitian matrix tridiagonalization process. The paper is reasonably expository, keeping simple by avoiding some detailed analyses.

The author’s work was supported by NSERC of Canada grant OGP0009236.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Björck, Å., Paige, C.C.: Loss and recapture of orthogonality in the modified Gram-Schmidt algorithm. SIAM J. Matrix Anal. Appl. 13, 176–190 (1992). https://doi.org/10.1137/0613015

    Article  MathSciNet  MATH  Google Scholar 

  2. Davis, C., Kahan, W.M.: Some new bounds on perturbations of subspaces. Bull. Am. Math. Soc. 75(4), 863–868 (1969). https://doi.org/10.1090/S0002-9904-1969-12330-X

    Article  MathSciNet  MATH  Google Scholar 

  3. Fong, D., Saunders, M.A.: An iterative algorithm for sparse least-squares problems. SIAM J. Sci. Comput. 33(5), 2950–2971 (2011). https://doi.org/10.1137/10079687X

    Article  MathSciNet  MATH  Google Scholar 

  4. Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. 2, 205–224 (1965). https://doi.org/10.1137/0702016

    Article  MathSciNet  MATH  Google Scholar 

  5. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th ed., The Johns Hopkins University Press, Baltimore (2013). (December 2012) ISBN 9781421407944

    Google Scholar 

  6. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952). https://doi.org/10.6028/jres.049.044

    Article  MathSciNet  MATH  Google Scholar 

  7. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. 45, 255–282 (1950). https://doi.org/10.6028/jres.045.026

    Article  MathSciNet  Google Scholar 

  8. Lanczos, C.: Solution of systems of linear equations by minimized iterations. J. Res. Natl. Bur. Stand. 49, 33–53 (1952). https://doi.org/10.6028/jres.049.006

    Article  MathSciNet  Google Scholar 

  9. Paige, C.C.: Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem. Linear Algebra Appl. 34, 235–258 (1980). https://doi.org/10.1016/0024-3795(80)90167-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Paige, C.C.: A useful form of unitary matrix obtained from any sequence of unit 2-norm \(n\)-vectors. SIAM J. Matrix Anal. Appl. 31, 565–583 (2009). https://doi.org/10.1137/080725167

    Article  MathSciNet  MATH  Google Scholar 

  11. Paige, C.C.: An augmented stability result for the Lanczos Hermitian matrix tridiagonalization process. SIAM J. Matrix Anal. Appl. 31, 2347–2359 (2010). https://doi.org/10.1137/090761343

    Article  MathSciNet  MATH  Google Scholar 

  12. Paige, C.C.: Accuracy of the Lanczos process for the eigenproblem and solution of equations. SIAM J. Matrix Anal. Appl. (submitted)

    Google Scholar 

  13. Paige, C.C., Rozložník, M., Strakoš, Z.: Modified gram-schmidt (MGS), least squares, and backward stability of MGS-GMRES. SIAM J. Matrix Anal. Appl. 28, 264–284 (2006). https://doi.org/10.1137/050630416

    Article  MathSciNet  MATH  Google Scholar 

  14. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982). https://doi.org/10.1145/355984.355989

    Article  MathSciNet  MATH  Google Scholar 

  15. Paige, C.C., Strakoš, Z.: Scaled total least squares fundamentals. Numer. Math. 91, 117–146 (2002). https://doi.org/10.1007/s002110100314

    Article  MathSciNet  MATH  Google Scholar 

  16. Paige, C.C., Strakoš, Z.: Core problems in linear algebraic systems. SIAM J. Matrix Anal. Appl. 27, 861–875 (2006). https://doi.org/10.1137/040616991

    Article  MathSciNet  MATH  Google Scholar 

  17. Paige, C.C., Wülling, W.: Properties of a unitary matrix obtained from a sequence of normalized vectors. SIAM J. Matrix Anal. Appl. 35, 526–545 (2014). https://doi.org/10.1137/120897687

    Article  MathSciNet  MATH  Google Scholar 

  18. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986). https://doi.org/10.1137/0907058

    Article  MathSciNet  MATH  Google Scholar 

  19. Stewart, G.W.: On the perturbation of pseudo-inverses, projections, and linear least squares problems. SIAM Rev. 19, 634–662 (1977). https://doi.org/10.1137/1019104

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Paige .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paige, C.C. (2018). The Effects of Loss of Orthogonality on Large Scale Numerical Computations. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10962. Springer, Cham. https://doi.org/10.1007/978-3-319-95168-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95168-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95167-6

  • Online ISBN: 978-3-319-95168-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics