Skip to main content

Algorithm for Processing the Results of Cloud Convection Simulation Using the Methods of Machine Learning

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10963))

Included in the following conference series:

Abstract

Data preprocessing is an important stage in machine learning. The use of qualitatively prepared data increases the accuracy of predictions, even with simple models. The algorithm has been developed and implemented in the program code for converting the output data of a numerical model to a format suitable for subsequent processing. Detailed algorithm is presented for data pre-processing for selecting the most representative cloud parameters (features). As a result, six optimal parameters: vertical component of speed; temperature deviation from ambient temperature; relative humidity (above the water surface); the mixing ratio of water vapour; total droplet mixing ratio; vertical height of the cloud has been chosen as indicators for forecasting of dangerous convective phenomena (thunderstorm, heavy rain, hail). Feature selection has been provided by using recursive feature elimination algorithm with automatic tuning of the number of features selected with cross-validation. Cloud parameters have been fixed at mature stage of cloud development. Future work will be connected with identification of the influence of the nature of the evolution of the cloud parameters from initial stage to dissipation stage on the probability of a dangerous phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7. http://statweb.stanford.edu/~tibs/ElemStatLearn/

    Book  MATH  Google Scholar 

  2. Mitchell, T.: Machine Learning. Springer, Berlin (2009)

    Google Scholar 

  3. Raba, N., Stankova, E., Ampilova, N.: On investigation of parallelization effectiveness with the help of multi-core processors. Procedia Comput. Sci. 1(1), 2757–2762 (2010)

    Article  Google Scholar 

  4. Raba, N., Stankova, E.: On the possibilities of multi-core processor use for real-time forecast of dangerous convective phenomena. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, Bernady O. (eds.) ICCSA 2010. LNCS, vol. 6017, pp. 130–138. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12165-4_11

    Chapter  Google Scholar 

  5. Raba, N.O., Stankova, E.N.: On the problem of numerical modeling of dangerous convective phenomena: possibilities of real-time forecast with the help of multi-core processors. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6786, pp. 633–642. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21934-4_51

    Chapter  Google Scholar 

  6. Raba, N.O., Stankova, E.N.: On the effectiveness of using the GPU for numerical solution of stochastic collection equation. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., et al. (eds.) ICCSA 2013. LNCS, vol. 7975, pp. 248–258. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39640-3_18

    Chapter  Google Scholar 

  7. Raba, N., Stankova, E.: Research of influence of compensating descending flow on cloud’s life cycle by means of 1.5-dimensional model with 2 cylinders. In: Proceedings of MGO, vol. 559, pp. 192–209 (2009). (in Russian)

    Google Scholar 

  8. Stankova, E.N., Grechko, I.A., Kachalkina, Y.N., Khvatkov, E.V.: Hybrid approach combining model-based method with the technology of machine learning for forecasting of dangerous weather phenomena. In: Gervasi, O., Murgante, B., Misra, S., Borruso, G., Torre, C.M., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 495–504. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62404-4_37

    Chapter  Google Scholar 

  9. Stankova, E.N., Balakshiy, A.V., Petrov, D.A., Shorov, A.V., Korkhov, V.V.: Using technologies of OLAP and machine learning for validation of the numerical models of convective clouds. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., et al. (eds.) ICCSA 2016. LNCS, vol. 9788, pp. 463–472. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42111-7_36

    Chapter  Google Scholar 

  10. Petrov, D.A., Stankova, E.N.: Use of consolidation technology for meteorological data processing. In: Murgante, B., Misra, S., Rocha, A.A.C., Torre, C., Rocha, J.G., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 440–451. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_30

    Chapter  Google Scholar 

  11. Petrov, D.A., Stankova, E.N.: Integrated information system for verification of the models of convective clouds. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., et al. (eds.) ICCSA 2015. LNCS, vol. 9158, pp. 321–330. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21410-8_25

    Chapter  Google Scholar 

  12. Stankova, E.N., Petrov, D.A.: Complex information system for organization of the input data of models of convective clouds. Vestnik of Saint-Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes. Issue 3, pp. 83–95 (2015). (in Russian)

    Google Scholar 

  13. Petrov, D.A., Stankova, E.N.: Use of consolidation technology for meteorological data processing. In: Murgante, B., Misra, S., Rocha, A.A.C., Torre, C., Rocha, J.G., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 440–451. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_30

    Chapter  Google Scholar 

  14. Petrov, D.A., Stankova, E.N.: Integrated information system for verification of the models of convective clouds. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., et al. (eds.) ICCSA 2015. LNCS, vol. 9158, pp. 321–330. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21410-8_25

    Chapter  Google Scholar 

  15. Petrov, D., Stankova, E.: Complex information system for organization of the input data of models of convective clouds Vestnik of Saint-Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes. Issue 3. pp. 83–95 (2015). (in Russian)

    Google Scholar 

  16. Scikit-learn. Machine Learning in Python. http://scikit-learn.org/

  17. Bogdanov, A., Degtyarev, A., Korkhov, V., Gaiduchok, V., Gankevich, I.: Virtual Supercomputer as basis of Scientific Computing, in series: Horizons in Computer Science Research. In: Clary, T.S. (eds.), vol. 11, pp. 159–198. Nova Science Publishers (2015). ISBN: 978-1-63482-499-6

    Google Scholar 

  18. Korkhov, V., Krefting, D., Kukla, T., Terstyanszky, G.Z., Caan, M., Olabarriaga, S.D.: Exploring workflow interoperability tools for neuroimaging data analysis. In: WORKS 2011 - Proceedings of the 6th Workshop on Workflows in Support of Large-Scale Science, Co-located with SC 2011, pp. 87–96 (2011). https://doi.org/10.1145/2110497.2110508

  19. Kulabukhova, N., Bogdanov, A., Degtyarev, A.: Problem-solving environment for beam dynamics analysis in particle accelerators. In: Gervasi, O., Murgante, B., Misra, S., Borruso, G., Torre, C.M., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 473–482. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62404-4_35

    Chapter  Google Scholar 

  20. Kulabukhova, N., Andrianov, S.N., Bogdanov, A., Degtyarev, A.: Simulation of space charge dynamics in high intensive beams on hybrid systems. In: Gervasi, O. et al. (eds.) Computational Science and its Applications – ICCSA 2016, vol. 9786, pр. 284–295. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_22

    Chapter  Google Scholar 

Download references

Acknowledgment

This research was sponsored by the Russian Foundation for Basic Research under the projects: № 16-07-01113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Stankova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stankova, E.N., Ismailova, E.T., Grechko, I.A. (2018). Algorithm for Processing the Results of Cloud Convection Simulation Using the Methods of Machine Learning. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10963. Springer, Cham. https://doi.org/10.1007/978-3-319-95171-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95171-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95170-6

  • Online ISBN: 978-3-319-95171-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics