Abstract
Data preprocessing is an important stage in machine learning. The use of qualitatively prepared data increases the accuracy of predictions, even with simple models. The algorithm has been developed and implemented in the program code for converting the output data of a numerical model to a format suitable for subsequent processing. Detailed algorithm is presented for data pre-processing for selecting the most representative cloud parameters (features). As a result, six optimal parameters: vertical component of speed; temperature deviation from ambient temperature; relative humidity (above the water surface); the mixing ratio of water vapour; total droplet mixing ratio; vertical height of the cloud has been chosen as indicators for forecasting of dangerous convective phenomena (thunderstorm, heavy rain, hail). Feature selection has been provided by using recursive feature elimination algorithm with automatic tuning of the number of features selected with cross-validation. Cloud parameters have been fixed at mature stage of cloud development. Future work will be connected with identification of the influence of the nature of the evolution of the cloud parameters from initial stage to dissipation stage on the probability of a dangerous phenomenon.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7. http://statweb.stanford.edu/~tibs/ElemStatLearn/
Mitchell, T.: Machine Learning. Springer, Berlin (2009)
Raba, N., Stankova, E., Ampilova, N.: On investigation of parallelization effectiveness with the help of multi-core processors. Procedia Comput. Sci. 1(1), 2757–2762 (2010)
Raba, N., Stankova, E.: On the possibilities of multi-core processor use for real-time forecast of dangerous convective phenomena. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, Bernady O. (eds.) ICCSA 2010. LNCS, vol. 6017, pp. 130–138. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12165-4_11
Raba, N.O., Stankova, E.N.: On the problem of numerical modeling of dangerous convective phenomena: possibilities of real-time forecast with the help of multi-core processors. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6786, pp. 633–642. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21934-4_51
Raba, N.O., Stankova, E.N.: On the effectiveness of using the GPU for numerical solution of stochastic collection equation. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., et al. (eds.) ICCSA 2013. LNCS, vol. 7975, pp. 248–258. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39640-3_18
Raba, N., Stankova, E.: Research of influence of compensating descending flow on cloud’s life cycle by means of 1.5-dimensional model with 2 cylinders. In: Proceedings of MGO, vol. 559, pp. 192–209 (2009). (in Russian)
Stankova, E.N., Grechko, I.A., Kachalkina, Y.N., Khvatkov, E.V.: Hybrid approach combining model-based method with the technology of machine learning for forecasting of dangerous weather phenomena. In: Gervasi, O., Murgante, B., Misra, S., Borruso, G., Torre, C.M., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 495–504. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62404-4_37
Stankova, E.N., Balakshiy, A.V., Petrov, D.A., Shorov, A.V., Korkhov, V.V.: Using technologies of OLAP and machine learning for validation of the numerical models of convective clouds. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., et al. (eds.) ICCSA 2016. LNCS, vol. 9788, pp. 463–472. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42111-7_36
Petrov, D.A., Stankova, E.N.: Use of consolidation technology for meteorological data processing. In: Murgante, B., Misra, S., Rocha, A.A.C., Torre, C., Rocha, J.G., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 440–451. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_30
Petrov, D.A., Stankova, E.N.: Integrated information system for verification of the models of convective clouds. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., et al. (eds.) ICCSA 2015. LNCS, vol. 9158, pp. 321–330. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21410-8_25
Stankova, E.N., Petrov, D.A.: Complex information system for organization of the input data of models of convective clouds. Vestnik of Saint-Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes. Issue 3, pp. 83–95 (2015). (in Russian)
Petrov, D.A., Stankova, E.N.: Use of consolidation technology for meteorological data processing. In: Murgante, B., Misra, S., Rocha, A.A.C., Torre, C., Rocha, J.G., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 440–451. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_30
Petrov, D.A., Stankova, E.N.: Integrated information system for verification of the models of convective clouds. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., et al. (eds.) ICCSA 2015. LNCS, vol. 9158, pp. 321–330. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21410-8_25
Petrov, D., Stankova, E.: Complex information system for organization of the input data of models of convective clouds Vestnik of Saint-Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes. Issue 3. pp. 83–95 (2015). (in Russian)
Scikit-learn. Machine Learning in Python. http://scikit-learn.org/
Bogdanov, A., Degtyarev, A., Korkhov, V., Gaiduchok, V., Gankevich, I.: Virtual Supercomputer as basis of Scientific Computing, in series: Horizons in Computer Science Research. In: Clary, T.S. (eds.), vol. 11, pp. 159–198. Nova Science Publishers (2015). ISBN: 978-1-63482-499-6
Korkhov, V., Krefting, D., Kukla, T., Terstyanszky, G.Z., Caan, M., Olabarriaga, S.D.: Exploring workflow interoperability tools for neuroimaging data analysis. In: WORKS 2011 - Proceedings of the 6th Workshop on Workflows in Support of Large-Scale Science, Co-located with SC 2011, pp. 87–96 (2011). https://doi.org/10.1145/2110497.2110508
Kulabukhova, N., Bogdanov, A., Degtyarev, A.: Problem-solving environment for beam dynamics analysis in particle accelerators. In: Gervasi, O., Murgante, B., Misra, S., Borruso, G., Torre, C.M., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 473–482. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62404-4_35
Kulabukhova, N., Andrianov, S.N., Bogdanov, A., Degtyarev, A.: Simulation of space charge dynamics in high intensive beams on hybrid systems. In: Gervasi, O. et al. (eds.) Computational Science and its Applications – ICCSA 2016, vol. 9786, pр. 284–295. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_22
Acknowledgment
This research was sponsored by the Russian Foundation for Basic Research under the projects: № 16-07-01113.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Stankova, E.N., Ismailova, E.T., Grechko, I.A. (2018). Algorithm for Processing the Results of Cloud Convection Simulation Using the Methods of Machine Learning. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10963. Springer, Cham. https://doi.org/10.1007/978-3-319-95171-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-95171-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95170-6
Online ISBN: 978-3-319-95171-3
eBook Packages: Computer ScienceComputer Science (R0)