Abstract
We propose a novel watermarking scheme for images which optimizes the watermarking strength using Harmony Search Algorithm (HSA). The optimized watermarking scheme is based on the discrete wavelet transform (DWT) and singular value decomposition (SVD). The amount of modification made in the coefficients of the LL3 sub band of the host image depends on the values obtained by the Harmony Search algorithm. For optimization of scaling factors, HSA uses an objective function which is a linear combination of imperceptibility and robustness. The PSNR and SSIM values show that the visual quality of the signed and attacked images is good. The proposed scheme is robust against common image processing operations. It is concluded that the embedding and extraction of the proposed algorithm is well optimized, robust and show an improvement over other similar reported methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tsai, H.-H., Jhuang, Y.-J., Lai, Y.-S.: An SVD-based image watermarking in wavelet domain using SVR and PSO. Appl. Soft Comput. 12(8), 2442–2453 (2012)
Mishra, A., Goel, A., Singh, R., Chetty, G., Singh, L.: A novel image watermarking scheme using extreme learning machine. In: Proceedings of the IEEE World Congress on Computational Intelligence, pp. 1–6 (2012)
Motwani, M.C., Motwani, R.C., Harris Jr., F.C.: Wavelet based fuzzy perceptual mask for images. In: Proceedings of IEEE International Conference on Image Processing (ICIP 2009), Cairo, Egypt (2009)
Motwani, M.C., Harris Jr., F.C.: Fuzzy perceptual watermarking for ownership verification. In: Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition, Las Vegas, Nevada (2009)
Fındık, O., Babaoğlu, I., Ülker, E.: A color image watermarking scheme based on hybrid classification method: particle swarm optimization and k-nearest neighbor algorithm. Opt. Commun. 283(24), 4916–4922 (2010)
Cox, I., Kilian, J., Leighton, F.T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6, 1673–1687 (1997)
Run, R.-S., Horng, S.-J., Lai, J.-L., Kao, T.-W., Chen, R.-J.: An improved SVD-based watermarking technique for copyright protection. Expert Syst. Appl. 39, 673–689 (2012)
Kumsawat, P., Attakitmongcol, K., Srikaew, A.: A new approach for optimization in image watermarking by using genetic algorithms. IEEE Trans. Sig. Process. 53(12), 4707–4719 (2005)
Lai, C.-C.: A digital watermarking scheme based on singular value decomposition and tiny genetic algorithm. Digital Sig. Process. 21, 522–527 (2011)
Ishtiaq, M., Sikandar, B., Jaffar, A., Khan, A.: Adaptive watermark strength selection using particle swarm optimization. ICIC Express Lett. 4(5) (2010). ISSN: 1881-803X
Loukhaoukha, K., Chouinard, J.-Y., Taieb, M.H.: Optimal image watermarking algorithm based on LWT-SVD via multi-objective ant colony optimization. J. Inf. Hiding Multimedia Sig. Process. 2(4), 303–319 (2011)
Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76, 60–682 (2001)
Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194, 3902–3933 (2005)
Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol (2008)
Geem, Z.W.: Optimal cost design of water distribution networks using harmony search. Eng. Optim. 38, 259–280 (2006)
Cuevas, E., Ortega-Sánchez, N., Zaldivar, D., Pérez-Cisneros, M.: Circle detection by harmony search optimization. J. Intell. Rob. Syst. Theory Appl. 66(3), 359–376 (2013)
Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188, 1567–1579 (2007)
Omran, M.G.H., Mahdavi, M.: Global-best harmony search. Appl. Math. Comput. 198, 643–656 (2008)
Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization, harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194, 3902–3933 (2005)
Lee, K.S., Geem, Z.W., Lee, S.H., Bae, K.-W.: The harmony search heuristic algorithm for discrete structural optimization. Eng. Optim. 37, 663–684 (2005)
Kim, J.H., Geem, Z.W., Kim, E.S.: Parameter estimation of the nonlinear Muskingum model using harmony search. J. Am. Water Resour. Assoc. 37, 1131–1138 (2001)
Lee, K.S., Geem, Z.W.: A new structural optimization method based on the harmony search algorithm. Comput. Struct. 82, 781–798 (2004)
Ayvaz, T.M.: Simultaneous determination of aquifer parameters and zone structures with fuzzy c-means clustering and meta-heuristic harmony search algorithm. Adv. Water Resour. 30, 2326–2338 (2007)
Geem, Z.W., Lee, K.S., Park, Y.J.: Application of harmony search to vehicle routing. Am. J. Appl. Sci. 2, 1552–1557 (2005)
Mishra, A., Agarwal, C., Sharma, A., Bedi, P.: Optimized gray-scale image watermarking using DWT-SVD and firefly algorithm. Expert Syst. Appl. 41, 7858–7867 (2014)
Mishra, A., Agarwal, C.: Toward optimal watermarking of grayscale images using the multiple scaling factor–based cuckoo search technique. In: Bio-Inspired Computation and Applications in Image Processing, pp. 131–155. Elsevier (2016). https://doi.org/10.1016/B978-0-12-804536-7.00007-7
Mishra, A., Rajpal, A., Bala, R.: Bi-directional extreme learning machine for semi-blind watermarking of compressed images. J. Inf. Secur. Appl. 38, 71–84 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Mishra, A., Agarwal, C., Chetty, G. (2018). Optimization of Scaling Factors for Image Watermarking Using Harmony Search Algorithm. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10963. Springer, Cham. https://doi.org/10.1007/978-3-319-95171-3_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-95171-3_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95170-6
Online ISBN: 978-3-319-95171-3
eBook Packages: Computer ScienceComputer Science (R0)