Skip to main content

Combining Automatic Variability Analysis Tools: An SPL Approach for Building a Framework for Composition

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Abstract

The automatic analysis of variability models is an important research field included in variability management activities. In the context of software product lines, it includes a set of methods and techniques aimed at verifying the design of the variability models in order to avoid inconsistencies during variability definition, implementation, and derivations activities. There exist several tools and proposals implementing the basic activities involved in this analysis process. However, the large number of them makes difficult to find and select the most suitable tool/set of tools to be applied in a particular SPL development. Taking into account this problem, our work aims at developing a framework, built as a software product line, that allows developers to compose/build automatic analysis tools according to their specific needs. We illustrate the proposal through possible instantiations of the framework.

This work is partially supported by the UNComa project 04/F009 “Reuso de Software orientado a Dominios - Parte II” part of the program “Desarrollo de Software Basado en Reuso - Parte II”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.sat4j.org/.

  2. 2.

    https://www.ifis.uni-luebeck.de/~moeller/racer/index.html.

  3. 3.

    Each approach contains a large number of proposals, which extend different aspects.

  4. 4.

    http://www.jessrules.com.

  5. 5.

    https://protege.stanford.edu/.

  6. 6.

    http://variamos.com/home/.

  7. 7.

    http://www.swi-prolog.org/.

  8. 8.

    We use the OVM graphical notation for these variability models.

  9. 9.

    https://www.sei.cmu.edu/productlines/frame_report/all_three.htm.

  10. 10.

    https://angular.io/.

  11. 11.

    http://expressjs.com.

  12. 12.

    https://www.mongodb.com.

  13. 13.

    http://www.featureide.com/.

  14. 14.

    https://sse.uni-due.de/en/research/projects/varmod-prime/.

References

  1. Bashroush, R., Garba, M., Rabiser, R., Groher, I., Botterweck, G.: Case tool support for variability management in software product lines. ACM Comput. Surv. 50(1), 14:1–14:45 (2017). https://doi.org/10.1145/3034827

    Article  Google Scholar 

  2. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models 20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010). https://doi.org/10.1016/j.is.2010.01.001

    Article  Google Scholar 

  3. Bessling, S., Huhn, M.: Formal safety analysis and verification in the model driven development of a pacemaker product line. In: MBEES, pp. 133–144 (2012)

    Google Scholar 

  4. Braun, G., Pol’la, M., Buccella, A., Cecchi, L., Fillottrani, P., Cechich, A.: A DL semantics for reasoning over OVM-based variability models. In: Proceedings of the 30th International Workshop on Description Logics, vol. 1879, July 2017

    Google Scholar 

  5. Buccella, A., Cechich, A., Arias, M., Pol’la, M., del Socorro Doldan, M., Morsan, E.: Towards systematic software reuse of GIS: insights from a case study. Comput. Geosci. 54, 9–20 (2013). http://www.sciencedirect.com/science/article/pii/S0098300412003913

    Article  Google Scholar 

  6. Cuenca, G.B., Horrocks, I., Motik, B., Bijan, P., Patel-Schneider, P., Sattler, U.: OWL 2: the next step for OWL. Web Semant. 6(4), 309–322 (2008)

    Article  Google Scholar 

  7. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applications. ACM Press/Addison-Wesley Publishing Co., New York (2000)

    Google Scholar 

  8. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature models and their specialization. Softw. Process Improv. Pract. 10(1), 7–29 (2005)

    Article  Google Scholar 

  9. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again. In: Proceedings of the 11th International Software Product Line Conference, SPLC 2007, pp. 23–34. IEEE Computer Society, Washington, DC, USA (2007). https://doi.org/10.1109/SPLC.2007.19

  10. Das, N., Ripon, S., Hossain, O., Uddin, M.S.: Requirement analysis of product line based semantic web services. Lect. Notes Softw. Eng. 2(3), 210 (2014)

    Article  Google Scholar 

  11. Dobrica, L., Niemelä, E.: A UML-based variability specification for product line architecture views. In: Proceedings of the Third International Conference on Software and Data Technologies, ICSOFT, pp. 234–239, Porto, Portugal (2008)

    Google Scholar 

  12. Fan, S., Zhang, N.: Feature model based on description logics. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4252, pp. 1144–1151. Springer, Heidelberg (2006). https://doi.org/10.1007/11893004_145

    Chapter  Google Scholar 

  13. Frantz, F.R., Benavides Cuevas, D.F., Ruiz Cortés, A.: Automated analysis of orthogonal variability models using constraint programming. In: Xv Jornadas De Ingeniería Del Software Y Bases De Datos, 2010, Valencia, España (2010)

    Google Scholar 

  14. Haugen, O., Moller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A.: Adding standardized variability to domain specific languages. In: 2008 12th International Software Product Line Conference, pp. 139–148, September 2008

    Google Scholar 

  15. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge (2016)

    Google Scholar 

  16. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented domain analysis (FODA) feasibility study. Technical report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon University Pittsburgh, PA (1990)

    Google Scholar 

  17. Kang, K., Kim, S., Lee, J., Kim, K., Kim, G.J., Shin, E.: FORM: a feature-oriented reuse method with domain-specific reference architectures. Ann. Softw. Eng. 5, 143–168 (1998)

    Article  Google Scholar 

  18. Kowal, M., Ananieva, S., Thüm, T.: Explaining anomalies in feature models. In: Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences, GPCE 2016, pp. 132–143. ACM, New York, NY, USA (2016). https://doi.org/10.1145/2993236.2993248

  19. Lauenroth, K., Pohl, K., Toehning, S.: Model checking of domain artifacts in product line engineering. In: 2009 IEEE/ACM International Conference on Automated Software Engineering, pp. 269–280, November 2009

    Google Scholar 

  20. von der Massen, T., H. Lichter, H.: Deficiencies in feature models. In: Mannisto, T., Bosch, J. (eds.) Workshop on Software Variability Management for Product Derivation - Towards Tool Support (2004)

    Google Scholar 

  21. Mazo, R., Munoz-Fernandez, J.C., Rincon, L., Salinesi, C., Tamura, G.: VariaMos: an extensible tool for engineering (dynamic) product lines. In: Proceedings of the 19th International Software Product Line Conference, pp. 374–379. ACM (2015)

    Google Scholar 

  22. Mendonca, M., Branco, M., Cowan, D.: S.P.L.O.T.: software product lines online tools. In: Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems Languages and Applications, OOPSLA 2009, pp. 761–762. ACM, New York, NY, USA (2009). https://doi.org/10.1145/1639950.1640002

  23. Metzger, A., Pohl, K., Heymans, P., Schobbens, P.Y., Saval, G.: Disambiguating the documentation of variability in software product lines: a separation of concerns, formalization and automated analysis. In: 15th IEEE International Requirements Engineering Conference (RE 2007), pp. 243–253, October 2007

    Google Scholar 

  24. Nakajima, S.: Semi-automated diagnosis of foda feature diagram. In: Proceedings of the 2010 ACM Symposium on Applied Computing, SAC 2010, pp. 2191–2197. ACM, New York, NY, USA (2010). https://doi.org/10.1145/1774088.1774550

  25. Noorian, M., Ensan, A., Bagheri, E., Boley, H., Biletskiy, Y.: Feature model debugging based on description logic reasoning. In: Proceedings of the 17th International Conference on Distributed Multimedia Systems, DMS 2011, 18–20 October 2011, Convitto della Calza, Florence, Italy, pp. 158–164 (2011)

    Google Scholar 

  26. Pereira, J.A., Constantino, K., Figueiredo, E.: A systematic literature review of software product line management tools. In: Schaefer, I., Stamelos, I. (eds.) ICSR 2015. LNCS, vol. 8919, pp. 73–89. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14130-5_6

    Chapter  Google Scholar 

  27. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations, Principles and Techniques. Springer, Secaucus (2005)

    Book  Google Scholar 

  28. Pol’la, M., Buccella, A., Arias, M., Cechich, A.: Sevatax: service taxonomy selection validation process for SPL development. In: 2015 34th International Conference of the Chilean Computer Science Society (SCCC), pp. 1–6, November 2015

    Google Scholar 

  29. Rincon, L., Giraldo, G., Mazo, R., Salinesi, C., Diaz, D.: Method to identify corrections of defects on product line models. Electron. Notes Theor. Comput. Sci. 314, 61–81 (2015). http://www.sciencedirect.com/science/article/pii/S1571066115000286

    Article  Google Scholar 

  30. Rincón, L., Giraldo, L., Mazo, R., Salinesi, C.: An ontological rule-based approach for analyzing dead and false optional features in feature models. Electron. Notes Theor. Comput. Sci. 302, 111–132 (2014)

    Article  Google Scholar 

  31. Ripon, S., Piash, M.M., Hossain, S.M.A., Uddin, M.S.: Semantic web based analysis of product line variant model. JCEE 6(1), 1–6 (2014)

    Google Scholar 

  32. Roos-Frantz, F., Galindo, J.A., Benavides, D., Cortés, A.R., Garcıa-Galán, J.: Automated analysis of diverse variability models with tool support. In: Jornadas de Ingenierıa del Software y de Bases de Datos (JISBD 2014), Cádiz. Spain, p. 160 (2014)

    Google Scholar 

  33. Roos-Frantz, F., Galindo, J.A., Benavides, D., Ruiz-Cortés, A.: FaMa-OVM: a tool for the automated analysis of OVMs. In: Proceedings of the 16th International Software Product Line Conference, vol. 2, pp. 250–254. ACM (2012)

    Google Scholar 

  34. Rumpe, B., Robert, F.: Variability in UML language and semantics. Softw. Syst. Model. 10(4), 439–440 (2011)

    Article  Google Scholar 

  35. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Reasoning of feature models from derived features. In: Proceedings of the 11th International Conference on Generative Programming and Component Engineering, GPCE 2012, ACM, New York, NY, USA (2012)

    Google Scholar 

  36. Segura, S., Benavides, D., Ruiz-CortÃ\(\copyright \)s, A.: Fama test suite v1.2. Technical report ISA-10-TR-01, March 2010. http://www.isa.us.es/

  37. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: COVAMOF: a framework for modeling variability in software product families. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 197–213. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28630-1_12

    Chapter  Google Scholar 

  38. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. Web Semant. 5(2), 51–53 (2007)

    Article  Google Scholar 

  39. Sree-Kumar, A., Planas, E., Clariso, R.: Analysis of feature models using alloy: a survey. In: Proceedings 7th International Workshop on Formal Methods and Analysis in Software Product Line Engineering, FMSPLE@ETAPS 2016, Eindhoven, The Netherlands, 3 April 2016, pp. 46–60 (2016). https://doi.org/10.4204/EPTCS.206.5

    Article  Google Scholar 

  40. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771_26

    Chapter  Google Scholar 

  41. Wang, H.H., Li, Y.F., Sun, J., Zhang, H., Pan, J.: Verifying feature models using OWL. Web Semant. 5(2), 117–129 (2007)

    Article  Google Scholar 

  42. Zaid, L., Kleinermann, F., Troyer, O.D.: Applying semantic web technology to feature modeling. In: Proceedings of the 2009 ACM Symposium on Applied Computing, SAC 2009. ACM, New York, NY, USA (2009)

    Google Scholar 

  43. Ziadi, T., Jézéquel, J.: Software product line engineering with the UML: deriving products. In: Käköla, T., Dueñas, J.C. (eds.) Software Product Lines: Research Issues in Engineering and Management, pp. 557–588. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustina Buccella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buccella, A., Pol’la, M., de Galarreta, E.R., Cechich, A. (2018). Combining Automatic Variability Analysis Tools: An SPL Approach for Building a Framework for Composition. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10963. Springer, Cham. https://doi.org/10.1007/978-3-319-95171-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95171-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95170-6

  • Online ISBN: 978-3-319-95171-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics