Abstract
The paper contains the survey of benefits of using graphical processors for general purpose computations as a part of problem-solving environment in the beam physics studies. The comparison of testing numerical element-to-element modelling on CPU and the long-turn symbolic simulation with the general purpose GPUs in the working prototype is made. With the help of the graphical processors from both sides - the general purpose computations and the graphical units itself - the analysis of beam behaviour under the influence of the space charge is done.
The work is supported by RFBR 16-07-01113A.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kulabukhova, N., Andrianov, S.N., Bogdanov, A., Degtyarev, A.: Simulation of space charge dynamics in high intensive beams on hybrid systems. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 284–295. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_22
Kulabukhova, N.: Software for virtual accelerator environment. In: RuPAC 2012 Contributions to the Proceedings. JACOW (2012)
Petrov, D.A., Stankova, E.N.: Use of consolidation technology for meteorological data processing. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 440–451. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_30
Stankova, E.N., Balakshiy, A.V., Petrov, D.A., Shorov, A.V., Korkhov, V.V.: Using technologies of OLAP and machine learning for validation of the numerical models of convective clouds. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9788, pp. 463–472. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42111-7_36
Bogdanov, A., Degtyarev, A., Korkhov, V., Gaiduchok, V., Gankevich, I.: Virtual supercomputer as basis of scientific computing. In: Horizons in Computer Science Research, vol. 11. Nova Science Publishers (2015)
Korkhov, V., Kukla, T., Krefting, D., Terstyanszky, G.Z., Caan, M., Olabarriaga, S.D.: Exploring workflow interoperability tools for neuroimaging data analysis. In: Proceedings of the 6th Workshop on Workflows in Support of Large-Scale Science (2011)
Kulabukhova, N., Bogdanov, A., Degtyarev, A.: Problem-solving environment for beam dynamics analysis in particle accelerators. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 473–482. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62404-4_35
Andrianov, S.N.: Dynamical Modeling of Control Systems for Particle Beams. Saint Petersburg State University, Saint Petersburg (2004)
Miklos, S.: Electron and Ion Optics. Mir, Moscow (1990). (in Russian)
NumPy: the fundamental package for scientific computing with Python. http://www.numpy.org/
pyCUDA: Nvidia’s CUDA parallel computation API for Python. https://documen.tician.de/pycuda/
SymPy: a Python library for symbolic mathematics. http://www.sympy.org/en/index.html
TkInter: Pythons de-facto standard GUI package. https://wiki.python.org/moin/TkInter
Seaborn: Python visualization library based on matplotlib. http://seaborn.pydata.org/index.html
Scikit-learn: tools for data mining and data analysis. http://scikit-learn.org/stable/
TensorFlow: an open source machine learning framework
Seiskari, O., Kommeri, J., Niemi, T.: GPU in Physics Computation: Case Geant4 Navigation (2011). https://arxiv.org/pdf/1209.5235.pdf
Amyx, K., Balasalle, J., King, J., Pogorelov, V., Borland, M., Soliday, R.: Beam dynamics simulations with a GPU-accelerated version of elegant. JACOW (2013)
King, J.R., Pogorelov, I.V., Amyx, K.M., Borland, M., Soliday, R.: GPU acceleration and performance of the particle-beam-dynamics code Elegant (2011). https://arxiv.org/pdf/1710.07350.pdf
Acknowledgments
The author would like to express gratitude to Vladimir Korkhov for valuable help. The work was sponsored by the Russian Foundation for Basic Research under the project: 16-07-01113 “Virtual supercomputer as a tool for solving complex problems” and the SPbSU equipment project: 9.40.1615.2017 “Deployment of experimental high-performance computing infrastructure to support scientific research of the Department of computer modelling and multiprocessor systems”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Kulabukhova, N. (2018). GPGPU for Problem-Solving Environment in Accelerator Physics. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10963. Springer, Cham. https://doi.org/10.1007/978-3-319-95171-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-95171-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95170-6
Online ISBN: 978-3-319-95171-3
eBook Packages: Computer ScienceComputer Science (R0)