Skip to main content

GPGPU for Problem-Solving Environment in Accelerator Physics

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10963))

Included in the following conference series:

  • 2048 Accesses

Abstract

The paper contains the survey of benefits of using graphical processors for general purpose computations as a part of problem-solving environment in the beam physics studies. The comparison of testing numerical element-to-element modelling on CPU and the long-turn symbolic simulation with the general purpose GPUs in the working prototype is made. With the help of the graphical processors from both sides - the general purpose computations and the graphical units itself - the analysis of beam behaviour under the influence of the space charge is done.

The work is supported by RFBR 16-07-01113A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kulabukhova, N., Andrianov, S.N., Bogdanov, A., Degtyarev, A.: Simulation of space charge dynamics in high intensive beams on hybrid systems. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 284–295. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_22

    Chapter  Google Scholar 

  2. Kulabukhova, N.: Software for virtual accelerator environment. In: RuPAC 2012 Contributions to the Proceedings. JACOW (2012)

    Google Scholar 

  3. Petrov, D.A., Stankova, E.N.: Use of consolidation technology for meteorological data processing. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 440–451. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_30

    Chapter  Google Scholar 

  4. Stankova, E.N., Balakshiy, A.V., Petrov, D.A., Shorov, A.V., Korkhov, V.V.: Using technologies of OLAP and machine learning for validation of the numerical models of convective clouds. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9788, pp. 463–472. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42111-7_36

    Chapter  Google Scholar 

  5. Bogdanov, A., Degtyarev, A., Korkhov, V., Gaiduchok, V., Gankevich, I.: Virtual supercomputer as basis of scientific computing. In: Horizons in Computer Science Research, vol. 11. Nova Science Publishers (2015)

    Google Scholar 

  6. Korkhov, V., Kukla, T., Krefting, D., Terstyanszky, G.Z., Caan, M., Olabarriaga, S.D.: Exploring workflow interoperability tools for neuroimaging data analysis. In: Proceedings of the 6th Workshop on Workflows in Support of Large-Scale Science (2011)

    Google Scholar 

  7. Kulabukhova, N., Bogdanov, A., Degtyarev, A.: Problem-solving environment for beam dynamics analysis in particle accelerators. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 473–482. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62404-4_35

    Chapter  Google Scholar 

  8. Andrianov, S.N.: Dynamical Modeling of Control Systems for Particle Beams. Saint Petersburg State University, Saint Petersburg (2004)

    Google Scholar 

  9. Miklos, S.: Electron and Ion Optics. Mir, Moscow (1990). (in Russian)

    Google Scholar 

  10. NumPy: the fundamental package for scientific computing with Python. http://www.numpy.org/

  11. pyCUDA: Nvidia’s CUDA parallel computation API for Python. https://documen.tician.de/pycuda/

  12. SymPy: a Python library for symbolic mathematics. http://www.sympy.org/en/index.html

  13. TkInter: Pythons de-facto standard GUI package. https://wiki.python.org/moin/TkInter

  14. Seaborn: Python visualization library based on matplotlib. http://seaborn.pydata.org/index.html

  15. Scikit-learn: tools for data mining and data analysis. http://scikit-learn.org/stable/

  16. TensorFlow: an open source machine learning framework

    Google Scholar 

  17. Seiskari, O., Kommeri, J., Niemi, T.: GPU in Physics Computation: Case Geant4 Navigation (2011). https://arxiv.org/pdf/1209.5235.pdf

  18. Amyx, K., Balasalle, J., King, J., Pogorelov, V., Borland, M., Soliday, R.: Beam dynamics simulations with a GPU-accelerated version of elegant. JACOW (2013)

    Google Scholar 

  19. King, J.R., Pogorelov, I.V., Amyx, K.M., Borland, M., Soliday, R.: GPU acceleration and performance of the particle-beam-dynamics code Elegant (2011). https://arxiv.org/pdf/1710.07350.pdf

Download references

Acknowledgments

The author would like to express gratitude to Vladimir Korkhov for valuable help. The work was sponsored by the Russian Foundation for Basic Research under the project: 16-07-01113 “Virtual supercomputer as a tool for solving complex problems” and the SPbSU equipment project: 9.40.1615.2017 “Deployment of experimental high-performance computing infrastructure to support scientific research of the Department of computer modelling and multiprocessor systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliia Kulabukhova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulabukhova, N. (2018). GPGPU for Problem-Solving Environment in Accelerator Physics. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10963. Springer, Cham. https://doi.org/10.1007/978-3-319-95171-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95171-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95170-6

  • Online ISBN: 978-3-319-95171-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics