Skip to main content

Virtual System for Teaching-Learning of Initial Education Using a Haptic Device

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2018)

Abstract

This article proposes a teaching-learning system for children of initial education through haptic devices and 3D Unity software. The system has several virtual interfaces that will be chosen according to the age, skills and knowledge that the child needs to acquire or improve. The interface allows to view the environment where the user must do a task or activity by the teacher in charge. Which it can listen to the instructions issued by the system and then be executed, also it has an introduction that remembers the objective to be fulfilled according to the interface. Through the haptic device geomagic Touch, a trajectory tracking control is carried out, which allows the child to perceive by means of feedback of forces if the movement and the direction with which he makes the stroke is the correct one. In addition, it allows to acquire the input signals the same that are sent to an algorithm that validates the stroke of the uppercase, lowercase vowels and basic figures made by the child. Also, it indicates to the teacher the results in a qualitative way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Greenwald, S., Kulik, A., Kunert, A., Beck, S., Fröhlich, B., Cobb, S., Parsons, S., Newbutt, N., Gouveia, C., Cook, C., Snyder, A., Payne, S., Holland, J., Buessing, S., Fields, G., Corning, W.: Technology and applications for collaborative learning. In: 12th International Conference on Computer Supported Collaborative Learning (CSCL), pp. 719–726 (2017)

    Google Scholar 

  2. Hite, R., Pereyra, M., Chesnutt, K., Corin, E., Childers, G., Jones, M.: Pedagogical perceptions of novel 3-D, haptic-enabled virtual reality technology. Int. J. Educ. Inf. Technol. 10, 73–81 (2016)

    Google Scholar 

  3. Brown, A., Green, T.: Virtual reality: low-cost tools and resources for the classroom. TechTrends 60(5), 517–519 (2016)

    Article  Google Scholar 

  4. Pruna, E., Acurio, A., Escobar, I., Albiol, S., Zumbana, P., Meythaler, A., Álvarez, F. A.: 3D virtual system using a haptic device for fine motor rehabilitation. In: WorldCIST 2017: Recent Advances in Information Systems and Technologies, pp. 648–656 (2017)

    Google Scholar 

  5. Yu, X., Zhang, M., Xue, Y., Zhu, Z.: An exploration of developing multi-touch virtual learning tools for young children. In: 2010 2nd International Conference on Education Technology and Computer (ICETC), vol. 3, pp. V3–4. IEEE, June 2010

    Google Scholar 

  6. Palluel-Germain, R., Bara, F., De Boisferon, A. H., Hennion, B., Gouagout, P., Gentaz, E.: A visuo-haptic device-telemaque-increases kindergarten children’s handwriting acquisition. In: EuroHaptics Conference, 2007 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, World Haptics 2007. Second Joint, pp. 72–77. IEEE, March 2007

    Google Scholar 

  7. Frade, B.V., Gondim, P.H.C.C., de Sousa, P.M.: The use of virtual reality as the object of mathematics learning. In: 2015 XVII Symposium on Virtual and Augmented Reality (SVR), pp. 137–141. IEEE, May 2015

    Google Scholar 

  8. Anthes, C., García-Hernández, R., Wiedemann, M., Kranzlmüller, D.: State of the Art of Virtual Reality Technology. In: IEEE Aerospace Conference (2016)

    Google Scholar 

  9. Wu, C.-M., Hsu, C.-W., Lee, T.-K., Smith, S.: A virtual reality keyboard with realistic haptic feedback in a fully immersive virtual environment. In: Virtual Reality, pp. 19–29 (2017)

    Article  Google Scholar 

  10. Chen, J., Glover, M., Yang, C., Li, C., Li, Z., Cangelosi, A.: Development of an immersive interface for robot teleoperation. In: Conference Towards Autonomous Robotic Systems, pp. 1–15 (2017)

    Google Scholar 

  11. Sun Joo, A., Kyle, J., James, M., Scott, B., Melanie, B., Catherine, B.: Using virtual pets to increase fruit and vegetable consumption in children: a technology-assisted social cognitive theory approach. Cyberpsychology Behav. Soc. Networking 19(2), 86–92 (2016)

    Article  Google Scholar 

  12. Bailey, J., Bailenson, J.: Considering virtual reality in children’s lives. J. Children Media 11(1), 107–113 (2017)

    Article  Google Scholar 

  13. Fowler, C.: Virtual reality and learning: Where is the pedagogy? Br. J. Educ. Technol. 46(2), 412–422 (2015)

    Article  Google Scholar 

  14. Chenga, M.T., Lin, Y.W., She, H.C.: Learning through playing Virtual Age: exploring the interactions among student concept learning, gaming performance, in-game behaviors, and the use of in-game characters. Comput. Educ. 86, 18–29 (2015)

    Article  Google Scholar 

  15. Minocha, S., Tudor, A.D., Tilling, S.: Affordances of mobile virtual reality and their role in learning and teaching. In: The 31st British Human Computer Interaction Conference (2017)

    Google Scholar 

  16. Hung, Y.H., Chen, C.H., Huang, S.: Applying augmented reality to enhance learning: a study of different teaching materials. J. Comput. Assist. Learn. 33(3), 252–266 (2016)

    Article  Google Scholar 

  17. Dinis, F.M., Guimarães, A.S., Carvalho, B.R., Martins, J.P.P.: Development of virtual reality game-based interfaces for civil engineering education. In: 2017 IEEE Global Engineering Education Conference (EDUCON), pp. 1195–1202. IEEE, April 2017

    Google Scholar 

  18. Elliman, J., Loizou, M., Loizides, F.: Virtual reality simulation training for student nurse education. In: 2016 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-Games), pp. 1–2. IEEE, September 2016

    Google Scholar 

  19. Psotka, J.: Immersive training systems: virtual reality and education and training. Instr. Sci. 23(5–6), 405–431 (1995)

    Article  Google Scholar 

  20. Ary, D., Jacobs, L.C., Irvine, C.K.S., Walker, D.: Introduction to Research in Education. Cengage Learning, Boston (2018)

    Google Scholar 

  21. Chaney, C.: Language development, metalinguistic skills, and print awareness in 3-year-old children. Appl. Psycholinguist. 13, 485–514 (1992)

    Article  Google Scholar 

  22. Clements, D., Swaminathan, S., Zeitler, M., Sarama, J.: Young children’s concepts of shape. Journal for Research in Mathematics Education 30(2), 192–212 (1999)

    Article  Google Scholar 

  23. Muijs, D., Reynolds, D.: Effective Teaching: Evidence and Practice. SAGE, London (2017)

    Google Scholar 

  24. Grajewski, D., Górski, F., Hamrol, A., Zawadzki, P.: Immersive and haptic educational simulations of assembly workplace conditions. In: International Conference on Virtual and Augmented Reality in Education, p. 359–368 (2015)

    Article  Google Scholar 

  25. Cortés, H., García, M., Acosta, R., Santana, P.: Diseño y Desarrollo de un Dispositivo Háptico con Aplicaciones para Entornos Educativos. En Memorias de la Novena Conferencia Iberoamericana en Sistemas, Cibernética e Informática (CISCI 2010) (2010)

    Google Scholar 

  26. Kirkman, M.A., Ahmed, M., Albert, A.F., Wilson, M.H., Nandi, D., Sevdalis, N.: The use of simulation in neurosurgical education and training: a systematic review. J. Neurosurg. 121(2), 228–246 (2014)

    Article  Google Scholar 

  27. Mohammadi, A., Tavakoli, M., Jazayeri, A.: Phansim: a simulink toolkit for the sensable phantom haptic devices. In: Proceedings of the 23rd CANCAM, Canada, vol. 11, pp. 787–790 (2011)

    Google Scholar 

Download references

Acknowledgements

We thank the “Universidad de las Fuerzas Armadas ESPE” for financing the inves-tigation project number 2016-PIC-0017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco Pilatásig , Emily Tobar , Lissette Paredes , Franklin M. Silva , Andrés Acurio , Edwin Pruna , Ivón Escobar or Zulia Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pilatásig, M. et al. (2018). Virtual System for Teaching-Learning of Initial Education Using a Haptic Device. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10850. Springer, Cham. https://doi.org/10.1007/978-3-319-95270-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95270-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95269-7

  • Online ISBN: 978-3-319-95270-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics