Skip to main content

Consensus Image Feature Extraction with Ordered Directionally Monotone Functions

  • Conference paper
  • First Online:
Fuzzy Information Processing (NAFIPS 2018)

Abstract

In this work we propose to use ordered directionally monotone functions to build an image feature extractor. Some theoretical aspects about directional monotonicity are studied to achieve our goal and a construction method for an image application is presented. Our proposal is compared to well-known methods in the literature as the gravitational method, the fuzzy morphology or the Canny method, and shows to be competitive. In order to improve the method presented, we propose a consensus feature extractor using combinations of the different methods. To this end we use ordered weighted averaging aggregation functions and obtain a new feature extractor that surpasses the results obtained by state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  2. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners, vol. 18. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73721-6

    Book  MATH  Google Scholar 

  3. Bezdek, J., Chandrasekhar, R., Attikouzel, Y.: A geometric approach to edge detection. IEEE Trans. Fuzzy Syst. 6(1), 52–75 (1998)

    Article  Google Scholar 

  4. Bustince, H., Barrenechea, E., Sesma-Sara, M., Lafuente, J., Dimuro, G.P., Mesiar, R., Kolesarova, A.: Ordered directionally monotone functions. Justification and application. IEEE Trans. Fuzzy Syst. PP(99), 1 (2017)

    Article  Google Scholar 

  5. Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Directional monotonicity of fusion functions. Eur. J. Oper. Res. 244, 300–308 (2015)

    Article  MathSciNet  Google Scholar 

  6. Calvo, T., Kolesárová, A., Komorníková, M., Mesiar, R.: Aggregation operators: properties, classes and construction methods. In: Calvo, T., Mayor, G., Mesiar, R. (eds.) Aggregation Operators: New Trends and Applications. STUDFUZ, vol. 97, pp. 3–104. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-7908-1787-4_1

    Chapter  MATH  Google Scholar 

  7. Canny, J.F.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  8. Estrada, F.J., Jepson, A.D.: Benchmarking image segmentation algorithms. Int. J. Comput. Vis. 85(2), 167–181 (2009)

    Article  Google Scholar 

  9. Forero-Vargas, M.G.: Fuzzy thresholding and histogram analysis. In: Nachtegael, M., Van der Weken, D., Kerre, E.E., Van De Ville, D. (eds.) Fuzzy Filters for Image Processing. STUDFUZZ, vol. 122, pp. 129–152. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-36420-7_6

    Chapter  Google Scholar 

  10. Gonzalez-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: On the choice of the pair conjunction-implication into the fuzzy morphological edge detector. IEEE Trans. Fuzzy Syst. 23(4), 872–884 (2015)

    Article  Google Scholar 

  11. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  12. Law, T., Itoh, H., Seki, H.: Image filtering, edge detection, and edge tracing using fuzzy reasoning. IEEE Trans. Pattern Anal. Mach. Intell. 18(5), 481–491 (1996)

    Article  Google Scholar 

  13. Lopez-Molina, C., Bustince, H., Fernandez, J., Couto, P., De Baets, B.: A gravitational approach to edge detection based on triangular norms. Pattern Recognit. 43(11), 3730–3741 (2010)

    Article  Google Scholar 

  14. Lopez-Molina, C., De Baets, B., Bustince, H.: A framework for edge detection based on relief functions. Inf. Sci. 278, 127–140 (2014)

    Article  MathSciNet  Google Scholar 

  15. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. B: Biol. Sci. 207(1167), 187–217 (1980)

    Article  Google Scholar 

  16. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)

    Article  Google Scholar 

  17. Medina-Carnicer, R., Madrid-Cuevas, F.J., Carmona-Poyato, A., Muñoz-Salinas, R.: On candidates selection for hysteresis thresholds in edge detection. Pattern Recognit. 42(7), 1284–1296 (2009)

    Article  Google Scholar 

  18. Medina-Carnicer, R., Muñoz-Salinas, R., Yeguas-Bolivar, E., Diaz-Mas, L.: A novel method to look for the hysteresis thresholds for the Canny edge detector. Pattern Recognit. 44(6), 1201–1211 (2011)

    Article  Google Scholar 

  19. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  20. Prewitt, J.: Object enhancement and extraction (1970)

    Google Scholar 

  21. Schweiser, B., Sklar, A.: Associative functions and statistical triangle inequalities. Publ. Math. Debr. 8, 169–186 (1961)

    MathSciNet  MATH  Google Scholar 

  22. Sobel, I., Feldman, G.: A 3x3 isotropic gradient operator for image processing. In: Hart, P.E., Duda, R.O. (eds.) Pattern Classification and Scene Analysis, pp. 271–272. Wiley, Hoboken (1973)

    Google Scholar 

  23. Torre, V., Poggio, T.: On edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(2), 147–163 (1986)

    Article  Google Scholar 

  24. Wilkin, T., Beliakov, G.: Weakly monotonic averaging functions. Int. J. Intell. Syst. 30(2), 144–169 (2015)

    Article  Google Scholar 

  25. Yager, R.: Quantifier guided aggregation using OWA operators. Int. J. Intell. Syst. 11(1), 49–73 (1996)

    Article  Google Scholar 

  26. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the Spanish Ministry of Science (Project TIN2016-77356-P) and the Research Services of Universidad Publica de Navarra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cedric Marco-Detchart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marco-Detchart, C., Dimuro, G.P., Sesma-Sara, M., Castillo-Lopez, A., Fernandez, J., Bustince, H. (2018). Consensus Image Feature Extraction with Ordered Directionally Monotone Functions. In: Barreto, G., Coelho, R. (eds) Fuzzy Information Processing. NAFIPS 2018. Communications in Computer and Information Science, vol 831. Springer, Cham. https://doi.org/10.1007/978-3-319-95312-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95312-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95311-3

  • Online ISBN: 978-3-319-95312-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics