Skip to main content

Color Mathematical Morphology Using a Fuzzy Color-Based Supervised Ordering

  • Conference paper
  • First Online:
Fuzzy Information Processing (NAFIPS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 831))

Included in the following conference series:

Abstract

Mathematical morphology is a theory with applications in image processing and analysis. In a supervised approach to mathematical morphology, pixel values are ranked according to sets of foreground and background elements specified a priori by the user. In this paper, we introduce a supervised fuzzy color-based approach to color mathematical morphology that provides an elegant alternative to the support vector machine-based approach developed by Velasco-Forero and Angulo. Briefly, color elements are ranked according to the degree of truth of the proposition “the considered color is a foreground color but it is not a background color” in the new supervised color morphological approach. Furthermore, the vagueness and uncertainty inherent to the description of colors by humans can be naturally incorporated in the new approach using the concept of fuzzy colors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The surface of a mapping h in the red-green plane is formally defined by the set \(\{(x,y,z):z=h(x,y,0),0 \le x \le 1, 0 \le y \le 1\}\).

References

  1. Heijmans, H.J.A.M.: Mathematical morphology: a modern approach in image processing based on algebra and geometry. SIAM Rev. 37(1), 1–36 (1995)

    Article  MathSciNet  Google Scholar 

  2. Soille, P.: Morphological Image Analysis. Springer, Berlin (1999). https://doi.org/10.1007/978-3-662-03939-7

    Book  MATH  Google Scholar 

  3. Braga-Neto, U., Goutsias, J.: Supremal multiscale signal analysis. SIAM J. Math. Anal. 36(1), 94–120 (2004)

    Article  MathSciNet  Google Scholar 

  4. Gonzalez-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: On the choice of the pair conjunction-implication into the fuzzy morphological edge detector. IEEE Trans. Fuzzy Syst. 23(4), 872–884 (2015)

    Article  Google Scholar 

  5. Rittner, L., Campbell, J., Freitas, P., Appenzeller, S., Pike, G.B., Lotufo, R.: Analysis of scalar maps for the segmentation of the corpus callosum in diffusion tensor fields. J. Math. Imaging Vis. 45, 214–226 (2013)

    Article  MathSciNet  Google Scholar 

  6. Serra, J.: A lattice approach to image segmentation. J. Math. Imaging Vis. 24, 83–130 (2006)

    Article  MathSciNet  Google Scholar 

  7. Sternberg, S.: Grayscale morphology. Comput. Vis. Graph. Image Process. 35, 333–355 (1986)

    Article  Google Scholar 

  8. Bloch, I.: Lattices of fuzzy sets and bipolar fuzzy sets, and mathematical morphology. Inf. Sci. 181(10), 2002–2015 (2011)

    Article  MathSciNet  Google Scholar 

  9. De Baets, B.: Fuzzy morphology: a logical approach. In: Ayyub, B.M., Gupta, M.M. (eds.) Uncertainty Analysis in Engineering and Science: Fuzzy Logic, Statistics, and Neural Network Approach, pp. 53–67. Kluwer Academic Publishers, Norwell (1997)

    Google Scholar 

  10. Nachtegael, M., Kerre, E.E.: Connections between binary, gray-scale and fuzzy mathematical morphologies. Fuzzy Sets Syst. 124(1), 73–85 (2001)

    Article  MathSciNet  Google Scholar 

  11. Sussner, P., Valle, M.E.: Classification of fuzzy mathematical morphologies based on concepts of inclusion measure and duality. J. Math. Imaging Vis. 32(2), 139–159 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ronse, C.: Why mathematical morphology needs complete lattices. Sig. Process. 21(2), 129–154 (1990)

    Article  MathSciNet  Google Scholar 

  13. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1993)

    MATH  Google Scholar 

  14. Grätzer, G., et al.: General Lattice Theory, 2nd edn. Birkhäuser Verlag, Basel (2003)

    MATH  Google Scholar 

  15. Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recogn. 40(11), 2914–2929 (2007)

    Article  Google Scholar 

  16. Lézoray, O.: Complete lattice learning for multivariate mathematical morphology. J. Vis. Commun. Image Represent. 35, 220–235 (2016)

    Article  Google Scholar 

  17. Aptoula, E., Lefèvre, S.: On lexicographical ordering in multivariate mathematical morphology. Pattern Recogn. Lett. 29(2), 109–118 (2008)

    Article  Google Scholar 

  18. Serra, J.: The “false colour” problem. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 13–23. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03613-2_2

    Chapter  Google Scholar 

  19. Hanbury, A., Serra, J.: Mathematical morphology in the CIELAB space. Image Anal. Stereol. 21, 201–206 (2002)

    Article  MathSciNet  Google Scholar 

  20. Barnett, V.: The ordering of multivariate data. J. Roy. Stat. Soc. A 3, 318–355 (1976)

    Article  MathSciNet  Google Scholar 

  21. Louverdis, G., Andreadis, I.: Soft morphological filtering using a fuzzy model and its application to colour image processing. Formal Pattern Anal. Appl. 6(4), 257–268 (2004)

    MathSciNet  Google Scholar 

  22. Velasco-Forero, S., Angulo, J.: Random projection depth for multivariate mathematical morphology. IEEE J. Sel. Top. Sig. Process. 6(7), 753–763 (2012)

    Article  Google Scholar 

  23. Sartor, L.J., Weeks, A.R.: Morphological operations on color images. J. Electron. Imaging 10(2), 548–559 (2001)

    Article  Google Scholar 

  24. Al-Otum, H.M.: A novel set of image morphological operators using a modified vector distance measure with color pixel classification. J. Vis. Commun. Image Represent. 30, 46–63 (2015)

    Article  Google Scholar 

  25. Angulo, J.: Morphological colour operators in totally ordered lattices based on distances: application to image filtering, enhancement and analysis. Comput. Vis. Image Underst. 107(1–2), 56–73 (2007)

    Article  Google Scholar 

  26. Comer, M.L., Delp, E.J.: Morphological operations for color image processing. J. Electron. Imaging 8(3), 279–289 (1999)

    Article  Google Scholar 

  27. Deborah, H., Richard, N., Hardeberg, J.Y.: Spectral ordering assessment using spectral median filters. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 387–397. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18720-4_33

    Chapter  Google Scholar 

  28. Ledoux, A., Richard, N., Capelle-Laizé, A.S., Fernandez-Maloigne, C.: Perceptual color hit-or-miss transform: application to dermatological image processing. SIViP 9(5), 1081–1091 (2015)

    Article  Google Scholar 

  29. Valle, M.E., Valente, R.A.: Mathematical morphology on the spherical CIELab quantale with an application in color image boundary detection. J. Math. Imaging Vis. 57(2), 183–201 (2017)

    Article  MathSciNet  Google Scholar 

  30. Velasco-Forero, S., Angulo, J.: Supervised ordering in \(\mathbb{R}^p\): application to morphological processing of hyperspectral images. IEEE Trans. Image Process. 20(11), 3301–3308 (2011)

    Article  MathSciNet  Google Scholar 

  31. Velasco-Forero, S., Angulo, J.: Vector ordering and multispectral morphological image processing. In: Celebi, M.E., Smolka, B. (eds.) Advances in Low-Level Color Image Processing. LNCVB, vol. 11, pp. 223–239. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7584-8_7

    Chapter  Google Scholar 

  32. Chamorro-Martínez, J., Soto-Hidalgo, J.M., Martínez-Jiménez, P.M., Sánchez, D.: Fuzzy color spaces: a conceptual approach to color vision. IEEE Trans. Fuzzy Syst. 25(5), 1264–1280 (2017)

    Article  Google Scholar 

  33. Acharya, T., Ray, A.: Image Processing: Principles and Applications. Wiley, Hoboken (2005)

    Book  Google Scholar 

  34. Pratt, W.: Digital Image Processing, 4th edn. Wiley, Hoboken (2007)

    Book  Google Scholar 

  35. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice-Hall, Upper Saddle River (2009)

    Google Scholar 

  36. Soto-Hidalgo, J.M., Martinez-Jimenez, P.M., Chamorro-Martinez, J., Sanchez, D.: JFCS: a color modeling java software based on fuzzy color spaces. IEEE Comput. Intell. Mag. 11(2), 16–28 (2016)

    Article  Google Scholar 

  37. Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic, 2nd edn. Chapman & Hall/CRC, Boca Raton (2000)

    MATH  Google Scholar 

Download references

Acknowledgment

This work was supported in part by CNPq under grant no 310118/2017-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Eduardo Valle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sangalli, M., Valle, M.E. (2018). Color Mathematical Morphology Using a Fuzzy Color-Based Supervised Ordering. In: Barreto, G., Coelho, R. (eds) Fuzzy Information Processing. NAFIPS 2018. Communications in Computer and Information Science, vol 831. Springer, Cham. https://doi.org/10.1007/978-3-319-95312-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95312-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95311-3

  • Online ISBN: 978-3-319-95312-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics