Skip to main content

Modeling and Simulation of Methane Dispersion in the Dam of Santo Antonio – Rondônia/Brazil

  • Conference paper
  • First Online:
Fuzzy Information Processing (NAFIPS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 831))

Included in the following conference series:

  • 782 Accesses

Abstract

We present in this paper a mathematical model of the dispersion of atmospheric methane that is proposed for the surface of lake in the region of the Santo Antônio Hydroelectric Dam in the state of Rondônia of Brazil. The model was elaborated from a general diffusion-advection-reaction for methane in which the diffusion coefficient was evaluated with techniques of fuzzy-logic-based. The numerical approximation was obtained with the use of the finite element method (FEM) for the spatial approximations and the Crank-Nicolson method for the temporal approximations. The approach provided scenarios for the directional fields of methane fluxes for different time periods and the results suggest a relation to the location in the reservoir, with flooded biomass, and with advective components for the dispersion of the gas.

Supported by CAPES–Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barros, L.C., Bassanezi, R.C., Lodwick, W.A.: A First Course in Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics. Studies in Fuzziness and Soft Computing, 1st edn. Springer, Berlin (2017). https://doi.org/10.1007/978-3-662-53324-6

    Book  MATH  Google Scholar 

  2. Barros, N., Cole, J., Travink, L., Prairie, Y., Bastiviken, D., Huszar, V., Giorgio, P.D., Roland, F.: Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 4, 593–596 (2011)

    Article  Google Scholar 

  3. Bastviken, D.: Organic Compounds-Methane. Elsevier, Amsterdan (2009)

    Google Scholar 

  4. Cicerone, R., Oremland, R.: Biogeochemical aspects of atmospheric methane. Glob. Biogeochem. Cycles 2, 299–327 (1988)

    Article  Google Scholar 

  5. Edelstein-Keshet, L.: Mathematical Models in Biology, Classics in Applied Mathematics, vol. 46. SIAM, Philadelphia (2005)

    Book  Google Scholar 

  6. Hein, R., Crutzen, P., Heimann, M.: An inverse modeling approach to investigate the global atmospheric methane cycle. Glob. Biogeochem. Cycles 11(1), 43–76 (1997)

    Article  Google Scholar 

  7. Houweling, S., Kaminski, T., Dentener, F., Lelieveld, J., Heimann, M.: Inverse modeling of methane sources and sinks using the adjoint of a global transport model. J. Geophys. Res. 104, 137–160 (1999)

    Article  Google Scholar 

  8. Keppler, F., Hamilton, J., Brab, M., Röckmann, T.: Methane emissions from terrestrial plants under aerobic conditions. Nature 439, 187–191 (2006)

    Article  Google Scholar 

  9. Lamb, B., Cambaliza, M., Davis, K., Edburg, S., Ferrara, T., Floerchinger, C., Heimburger, A.M., Herndon, S., Lauvaux, T., Lavoie, T., Lyon, D., Miles, N., Prasad, K., Richardson, S., Roscioli, J., Salmon, O., Shepson, P., Stirm, B., Whetstone, J.: Direct and indirect measurements and modeling of methane emissions in Indianapolis Indiana. Environ. Sci. Technol. 50(16), 8910–8917 (2016)

    Article  Google Scholar 

  10. Marani, L., Alvala, P.C.: Methane emissions from lakes and floodplains in Pantanal Brazil. Atmos. Environ. 41(8), 1627–1633 (2007)

    Article  Google Scholar 

  11. Marchuk, G.I.: Mathematical Models in Environmental Problems. Studies in Mathematics and its Applications, vol. 16. North-Holland, Amsterdan (1986)

    Book  Google Scholar 

  12. Meybeck, M.: Riverine transport of atmospheric carbon sources, global typology and budget. Water Air Soil Pollut. 70, 443–463 (1993)

    Article  Google Scholar 

  13. NOOA: Methane measurements. https://esrl.noaa.gov/gmd/ccgg/trends_ch4/ (2017). Accessed 26 May 2017

  14. Okubo, A.: Diffusion and Ecological Problems: Mathematical Models. Springer, Berlin (1980). https://doi.org/10.1007/BF02851862

    Book  MATH  Google Scholar 

  15. Poletti, E.C.C., Meyer, J.F.C.A.: Dispersion of pollutants in reservoir system: mathematical modeling via fuzzy logic and numerical approximation (in Portuguese). Biomatemática 19, 57–68 (2009)

    Google Scholar 

  16. Prestes, M.F.B., Meyer, J.F.C.A., Poletti, E.C.C.: Dispersion of polluting matter in aquatic mean: mathematical model, numerical approximation and computational simulation - Salto Grande reservoir, Americana/SP (in Portuguese). Biomatemática 23, 43–56 (2013)

    Google Scholar 

  17. Robles, A., Latrille, E., Ruano, M., Steyer, J.: A fuzzy-logic-based controller for methane production in anaerobic fixed-film reactors. Environ. Technol. 38(1), 42–52 (2017)

    Article  Google Scholar 

  18. Ruan, J., Chen, X., Huang, M., Zhang, T.: Application of fuzzy neural networks for modeling of biodegradation and biogas production in a full-scale internal circulation anaerobic reactor. J. Environ. Sci. Health Part A Tox Hazard Subst. Environ. Eng. 52(1), 7–14 (2017)

    Article  Google Scholar 

  19. Turkdogan-Aydinol, F., Yetilmezsoy, K.: A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater. J. Hazard. Mater. 182(1–3), 460–470 (2010)

    Article  Google Scholar 

  20. UNESCO: The UNESCO/IHA Measurement specification guidance for evaluating the GHG status of man-made freshwater reservoirs, 1st. edn. UNESCO, New York (2009)

    Google Scholar 

  21. Wuebbles, D., Hayhoe, K.: Atmospheric methane and global change. Earth-Sci. Rev. 57, 177–210 (2002)

    Article  Google Scholar 

  22. Xu, X., Yuan, F., Hanson, P., Wullschleger, S.D., Thornton, P., Riley, W., Song, X., Graham, D., Song, C., Tian, H.: Four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences 13, 3735–3755 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldo L. Diniz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diniz, G.L., Menezes, E.M. (2018). Modeling and Simulation of Methane Dispersion in the Dam of Santo Antonio – Rondônia/Brazil. In: Barreto, G., Coelho, R. (eds) Fuzzy Information Processing. NAFIPS 2018. Communications in Computer and Information Science, vol 831. Springer, Cham. https://doi.org/10.1007/978-3-319-95312-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95312-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95311-3

  • Online ISBN: 978-3-319-95312-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics