Skip to main content

Photometric Stereopsis for 3D Reconstruction of Space Objects

  • Chapter
  • First Online:
Handbook of Dynamic Data Driven Applications Systems

Abstract

The use of photometric stereopsis approaches to estimate the geometry of a resident space object (RSO) from image data is detailed. The set of algorithms and methods for shape estimation form an integral element of a Dynamic Data Driven Application System (DDDAS) for enhancing space situational awareness, where, sensor tasking and scheduling operations are carried out based upon the RSO orbital and geometric attributes, as estimated from terrestrial and space-based sensor systems. Techniques for estimating the relative motion between successive frames using image features are used for data alignment before surface normal estimation. Mathematical models of photometry and imaging physics are exploited to infer the surface normals from images of the target object under varied illumination conditions. Synthetic images generated from physics based ray-tracing engine are used to demonstrate the utility of the proposed algorithms.The proposed framework results in a estimates of the surface shape of the target object, which can subsequently used in forward models for prediction, data assimilation and subsequent sensor tasking operations. Sensitivity analysis is used to quantify the uncertainty of reconstructed surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Ackermann, F. Langguth, S. Fuhrmann, M. Goesele, Photometric stereo for outdoor webcams, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Providence, 2012) pp. 262–269. https://doi.org/10.1109/CVPR.2012.6247684

  2. N. Alldrin, D. Kriegman, Toward reconstructing surfaces with arbitrary isotropic reflectance: A stratified photometric stereo approach, in IEEE 11th International Conference on Computer Vision (ICCV), Rio de Janeiro, 2007 pp. 1–8. https://doi.org/10.1109/ICCV.2007.4408881

  3. O. Barnouin, H.E. Kahn, Amica images with geometry backplanes v1.0. hay-a-amica-3-amicageom-v1.0 (2012). http://sbn.psi.edu/pds/resource/amicageom.html

  4. Bouguet, J-Y., Camera calibration toolbox for matlab (2004). http://www.vision.caltech.edu/bouguetj/calib_doc/index.html.

  5. M. Carbajal, Apollo Soyuz (2009). http://nasa3d.arc.nasa.gov/detail/apollo-soyuz-c

  6. J.F. Cavanaugh, J.C. Smith, X. Sun, A.E. Bartels, L Ramos-Izquierdo, D.J. Krebs, J.E. McGarry, R. Trunzo, A.M. Novo-Gradac, J.L. Britt et al., The mercury laser altimeter instrument for the messenger mission, in The Messenger Mission to Mercury (Springer, New York, 2007), pp. 451–479

    Google Scholar 

  7. J.L. Crassidis, J.L. Junkins, Optimal Estimation of Dynamic Systems (CRC Press, Hoboken, 2011)

    MATH  Google Scholar 

  8. M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). http://doi.acm.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  9. R.T. Frankot, R. Chellappa, A method for enforcing integrability in shape from shading algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 439–451 (1988)

    Article  Google Scholar 

  10. K. Gray, Microsoft DirectX 9 Programmable Graphics Pipeline (Microsoft Press, Redmond, 2003)

    Google Scholar 

  11. R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  12. X.D. He, K.E. Torrance, F.X. Sillion, D.P. Greenberg, A comprehensive physical model for light reflection, in Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, Las Vegas, 1991

    Google Scholar 

  13. C. Hernandez, G. Vogiatzis, R. Cipolla, Multiview potometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 548–554 (2008)

    Article  Google Scholar 

  14. T. Higo, Y. Matsushita, N. Joshi, K. Ikeuchi, A hand-held photometric stereo camera for 3-d modeling, in IEEE 12th International Conference on Computer Vision, Kyoto, 2009, pp. 1234–1241. https://doi.org/10.1109/ICCV.2009.5459331

  15. B. Horn, Obtaining Shape from Shading Information (McGraw-Hill, New York, 1975)

    Google Scholar 

  16. B.K. Horn, M.J.Brooks, The variational approach to shape from shading. Comput. Vis. Graph. Image Process. 33(2), 174–208 (1986)

    Article  Google Scholar 

  17. J. Immerkaer, Fast noise variance estimation. Comput. Vis. Image Underst. 64(2), 300–302 (1996)

    Article  Google Scholar 

  18. B. Jia, K.D. Pham, E. Blasch, D. Shen, Z. Wang, G. Chen, Cooperative space object tracking using space-based optical sensors via consensus-based filters. IEEE Trans. Aerosp. Electron. Syst. 52(3), 1908–1936 (2016)

    Article  Google Scholar 

  19. S.J. Julier, J.K. Uhlmann, New extension of the Kalman filter to nonlinear systems, in AeroSense’97, International Society for Optics and Photonics, Orlando, 1997, pp. 182–193

    Google Scholar 

  20. R. Klette, K. Schluens, Height data from gradient maps, in Photonics East’96, International Society for Optics and Photonics, 1996, pp. 204–215

    Google Scholar 

  21. J. Lim, J. Ho, M.H. Yang, D. Kriegman, Passive photometric stereo from motion, in Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 2, Beijing, 2005, pp. 1635–1642. https://doi.org/10.1109/ICCV.2005.185

  22. Z. Liu, W. Wan, M. Peng, Q. Zhao, B. Xu, B. Liu, Y. Liu, K. Di, L. Li, T. Yu, B. Wang, J. Zhou, H. Chen, Remote sensing mapping and localization techniques for teleoperation of chang’e-3 rover. J. Remote Sen. 18(5), 971–980 (2014)

    Google Scholar 

  23. D. Lowe, Object recognition from local scale-invariant features, in Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol. 2, Kerkyra, 1999, pp. 1150–1157. https://doi.org/10.1109/ICCV.1999.790410

  24. B.D. Lucas, T. Kanade, An iterative image registration technique with an application to stereo vision. IJCAI 81, Vancouver, Canada, (1981)

    Google Scholar 

  25. S.P. Mallick, T.E. Zickler, D.J. Kriegman, P.N. Belhumeur, Beyond lambert: Reconstructing specular surface using color, in Computer Vision and Pattern Recognition, San Diego, CA (IEEE, 2005)

    Google Scholar 

  26. A.S. McEwen, Photometric functions for photoclinometry and other applications. Icarus 92(2), 298–311 (1991)

    Article  Google Scholar 

  27. A. OpenGL, M. Woo, J. Neider, T. Davis, OpenGL Programming Guide, Orlando, FL (Addison-Wesley, Reading, 1999)

    Google Scholar 

  28. M. Oren, S.K. Nayar, Generalization of Lambert’s reflectance model, in Proceedings of 21st Annual Conference on Computer Graphics and Interactive Technique, Orlando, (ACM, 1994)

    Google Scholar 

  29. M. Peng, K. Di, Z. Liu, Adaptive Markov random field model for dense matching of deep space stereo images. J. Remote Sens. 18(1), 77–89 (2014)

    Google Scholar 

  30. M. Pharr, G. Humphreys, Physically Based Rendering: From Theory to Implementation (Morgan Kaufmann, Amsterdam, 2004)

    Google Scholar 

  31. R. Raskar, K.H. Tan, R. Feris, J. Yu, M. Turk, Non-photorealistic camera: depth edge detection and stylized rendering using multi-flash imaging, in ACM Transactions on Graphics (TOG) (ACM, New York, 2004), pp. 679–688

    Google Scholar 

  32. D. Scharstein, R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)

    Article  Google Scholar 

  33. H. Schaub, J.L. Junkins, Analytical Mechanics of Space Systems (AIAA, Reston, 2003)

    Book  Google Scholar 

  34. S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, R. Szeliski, A comparison and evaluation of multi-view stereo reconstruction algorithms, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York City, (IEEE, 2006)

    Google Scholar 

  35. R.T. Tan, K. Nishino, K. Ikeuchi, Separating reflection component based on chromaticity and noise analysis. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1373–1379 (2004)

    Article  Google Scholar 

  36. C. Tomasi, T. Kanade, Shape and motion from image streams under orthography: a factorization method. Int. J. Comput. Vis. 9(2), 137–154 (1992)

    Article  Google Scholar 

  37. K.E. Torrance, E.M. Sparrow, Theory for off-specular reflection from roughened surface. J. Opt. Soc. Am. 57(9), 1105–1114 (1967)

    Article  Google Scholar 

  38. Y. Wang, J. Bu, N. Li, M. Song, P. Tan, Detecting discontinuities for surface reconstruction, in 21st International Conference on Pattern Recognition (ICPR), Tsukuba Science City, (IEEE, 2012), pp. 2108–2111

    Google Scholar 

  39. X.I. Wong, M. Majji. Uncertainty Quantification of Lucas Kanade Feature Track and Application to Visual Odometry. Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, 2017 IEEE Conference on. IEEE, 2017.

    Google Scholar 

  40. L.F. Yu, S.K. Yeung, Y.W. Tai, D. Terzopoulos, T. Chan, Outdoor photometric stereo, in IEEE International Conference on Computational Photography (ICCP), Jiuzhai, 2013, pp. 1–8. https://doi.org/10.1109/ICCPhot.2013.6528306

  41. Z. Zhou, Z. Wu, P. Tan, Multi-view photometric stereo with spatially varying isotropic materials, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, (IEEE, 2013), pp. 1482–1489

    Google Scholar 

Download references

Acknowledgements

This work is based upon work supported by the AFOSR grant FA9550-15-1-0313. Drs. Erik Blasch, Sai Ravella and Frederica Darema are acknowledged for the technical discussions. The authors are also grateful to the inputs of the anonymous reviewers. Their inputs enhanced the quality of the chapter extensively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Iuan Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, X.I., Majji, M., Singla, P. (2018). Photometric Stereopsis for 3D Reconstruction of Space Objects. In: Blasch, E., Ravela, S., Aved, A. (eds) Handbook of Dynamic Data Driven Applications Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-95504-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95504-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95503-2

  • Online ISBN: 978-3-319-95504-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics