Skip to main content

Multiscale DDDAS Framework for Damage Prediction in Aerospace Composite Structures

  • Chapter
  • First Online:
Handbook of Dynamic Data Driven Applications Systems

Abstract

In recent years, there has been a significant increase in the use of Unmanned Aerial Vehicles (UAV). UAVs are expected to fly a large number of long (48 or more hours) missions, and operate without failure. Furthermore, in order to increase the durability of these vehicles and to decrease weight, composite materials are currently experiencing a widespread adoption in applications related both to military and civilian aerospace structures. As a result, in order to decrease costs associated with the operation, maintenance, and, in some cases, loss of these vehicles, it is desirable to have a Dynamically Data-Driven Applications Systems framework that can reliably predict the onset and progressions of structural damage in geometrically and materially complex aerospace composite structures operating in the environments typical of UAVs. In this chapter we present a multiscale DDDAS Interactive Structure Composite Element Relation Network (DISCERN) framework.The proposed multiscale DISCERN framework is successfully deployed on a full-scale laminated composite structure to predict the damage onset, evolution, and the structure remaining fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://web.mit.edu/drela/Public/web/aswing/

References

  1. Z.P. Bažant, B.H. Oh, Crack band theory for fracture of concrete. Mater. Struct. 16, 155–177 (1983)

    Google Scholar 

  2. Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, T.E. Tezduyar, 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int. J. Numer. Methods Fluids 65, 207–235 (2011)

    MATH  Google Scholar 

  3. Y. Bazilevs, M.-C. Hsu, M.T. Bement, Adjoint-based control of fluid-structure interaction for computational steering applications. Proc. Comput. Sci. 18, 1989–1998 (2013)

    Article  Google Scholar 

  4. Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wuechner, K.-U. Bletzinger, 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction. Int. J. Numer. Methods Fluids 65, 236–253 (2011)

    MATH  Google Scholar 

  5. D.J. Benson, Y. Bazilevs, M.-C. Hsu, T.J.R. Hughes, A large-deformation, rotation-free isogeometric shell. Comput. Methods Appl. Mech. Eng. 200, 1367–1378 (2011)

    Article  MathSciNet  Google Scholar 

  6. D. Berry, T. Ashwill, Design of 9-meter carbon-fiberglass prototype blades: CX-100 and TX-100. Report of the Sandia National Laboratories (2007)

    Google Scholar 

  7. A.J. Booker, J.E. Dennis Jr., P.D. Frank, D.B. Serafini, V. Torczon, M.W. Trosset, A rigorous framework for optimization of expensive functions by surrogates. Struct. Optim. 17, 1–13 (1999)

    Article  Google Scholar 

  8. F. Darema, Dynamic data driven applications systems: a new paradigm for application simulations and measurements, in Proceedings of ICCS 2004 – 4th International Conference on Computational Science, Kraków, Poland, 2004, pp. 662–669

    Google Scholar 

  9. X. Deng, A. Korobenko, J. Yan, Y. Bazilevs, Isogeometric analysis of continuum damage in rotation-free composite shells. Comput. Methods Appl. Mech. Eng. 284, 349–372 (2015)

    Article  MathSciNet  Google Scholar 

  10. K.M. Farinholt, S.G. Taylor, G. Park, C.M. Ammerman, Full-scale fatigue tests of CX-100 wind turbine blades. Part I: testing, in SPIE Smart Structures/NDE, 2012, pp. 83430P–8

    Google Scholar 

  11. Z. Hashin, Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  12. M.-C. Hsu, C. Wang, A.J. Herrema, D. Schillinger, A. Ghoshal, Y. Bazilevs, An interactive geometry modeling and parametric design platform for isogeometric analysis. Comput. Math. Appl. 70, 1481–1500 (2015)

    Article  MathSciNet  Google Scholar 

  13. J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wuechner, K.-U. Bletzinger, The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Eng. 199, 2403–2416 (2010)

    Article  MathSciNet  Google Scholar 

  14. A. Korobenko, M.-C. Hsu, I. Akkerman, J. Tippmann, Y. Bazilevs, Structural mechanics modeling and FSI simulation of wind turbines. Math. Models Methods Appl. Sci. 23, 249–272 (2013)

    Article  MathSciNet  Google Scholar 

  15. A. Matzenmiller, J. Lubliner, R.B. Taylor, A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 20, 125–152 (1995)

    Article  Google Scholar 

  16. S.G. Taylor, K.M. Farinholt, H. Jeong, J.K. Jang, G. Park, M.D. Todd, C.R. Farrar, C.M. Ammerman, Wind turbine blade fatigue tests: lessons learned and application to shm system development, in European Workshop on Structural Health Monitoring, Dresden, Germany, 3–6 July 2012

    Google Scholar 

  17. S.G. Taylor, H. Jeong, J.K. Jang, G. Park, K.M. Farinholt, M.D. Todd, C.M. Ammerman, Full-scale fatigue tests of CX-100 wind turbine blades. Part II: analysis, in SPIE Smart Structures/NDE, 2012, pp. 83430Q–10

    Google Scholar 

  18. S.G. Taylor, G. Park, K.M. Farinholt, M.D. Todd, Fatigue crack detection performance comparison in a composite wind turbine rotor blade. Struct. Health Monit. 12, 252–262 (2013)

    Article  Google Scholar 

  19. J. Tippmann, F. Lanza di Scalea, Experiments on a wind turbine blade testing: an indication for damage using the causal and anti-causal Green’s function reconstructed from a diffuse field, in Proceedings of SPIE (International Society for Optical Engineering) Smart Structures/NDE Annual International Symposium Health Monitoring of Structural and Biological Systems, ed. by T. Kundu, vol. 9064, 2014, pp. 1–7

    Google Scholar 

  20. J. Tippmann, F. Lanza di Scalea, Passive-only damage detection by reciprocity of Green’s functions reconstructed from diffuse acoustic fields with application to wind turbine blades. J. Intell. Mater. Syst. Struct. 26(10), 1251–1258 (2014)

    Article  Google Scholar 

  21. J. Tippmann, P. Zhu, F. Lanza di Scalea, Application of damage detection methods using passive reconstruction of impulse response functions, in Philosophical Transactions of the Royal Society A–Mathematical, Physical and Engineering Sciences, vol. 373, 2015, pp. 1–16. Special Issue on New Perspectives in Offshore-Wind and Sea-Wave Energy Production

    Google Scholar 

  22. J.R. Zayas, W.D. Johnson, 3X-100 blade field test. Wind Energy Technology Department, Sandia National Laboratories, page Report (2008)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the AFOSR Grant FA9550-16-1-0131. The authors greatly acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Korobenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korobenko, A., Pigazzini, M., Deng, X., Bazilevs, Y. (2018). Multiscale DDDAS Framework for Damage Prediction in Aerospace Composite Structures. In: Blasch, E., Ravela, S., Aved, A. (eds) Handbook of Dynamic Data Driven Applications Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-95504-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95504-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95503-2

  • Online ISBN: 978-3-319-95504-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics