Skip to main content

How to Create an Adaptive Learning Environment by Means of Virtual Organizations

  • Conference paper
  • First Online:
Learning Technology for Education Challenges (LTEC 2018)

Abstract

Normally, learning environments provide all participants with the same content and the same activities; this includes knowledge sharing, the addition of material to knowledge domains and pedagogical mediation activities for teachers and students. Thus, these processes do not tend to consider the differences that exist between each student, both in their performance and behavior in the environment. This paper presents a new agent-based environment model, which intends to apply Virtual Organizations (VO) to the field of Learning Management Systems (LMS) to foster collaboration and work between students and teachers. The model is designed as a VO of agents, which adapts that activities and resources available in the LMS to the characteristics of the participants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helsinger, A., Thome, M., Wright, T.: Cougaar: a scalable, distributed multi-agent architecture. In: IEEE International Conference Systems, Man and Cybernetics, vol. 2, pp. 1910–1917 (2004)

    Google Scholar 

  2. Casado-Vara, R., Corchado, J.M.: Blockchain for democratic voting: how blockchain could cast off voter fraud. Orient. J. Comp. Sci. Technol. 11(1) (2018)

    Article  Google Scholar 

  3. Corchado, J.M., Aiken, J., Corchado, E.S., Lefevre, N., Smyth, T.: Quantifying the ocean’s CO2 budget with a CoHeL-IBR system. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 533–546. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28631-8_39

    Chapter  Google Scholar 

  4. Corchado, J.M., Aiken, J.: Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev. 32(4), 307–313 (2002). https://doi.org/10.1109/tsmcc.2002.806072

    Article  Google Scholar 

  5. Corchado, J., Fyfe, C., Lees, B.: Unsupervised learning for financial forecasting. In: Proceedings of the IEEE/IAFE/INFORMS 1998 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No. 98TH8367), pp. 259–263 (1998). https://doi.org/10.1109/CIFER.1998.690316

  6. Corchado, J.M., Bajo, J., de Paz, Y., Tapia, D.: Intelligent environment for monitoring alzheimer patients, agent technology for health care. Decis. Support Syst. 34(2), 382–396 (2008). ISSN 0167-9236

    Article  Google Scholar 

  7. Costa, Â., Novais, P., Corchado, J.M., Neves, J.: Increased performance and better patient attendance in an hospital with the use of smart agendas. Log. J. IGPL 20(4), 689–698 (2012). https://doi.org/10.1093/jigpal/jzr021

    Article  MathSciNet  Google Scholar 

  8. Weyns, D., Haesevoets, R., Helleboogh, A., Holvoet, T., Joosen, W.: The MACODO middleware for context-driven dynamic agent organizations. ACM Trans. Auton. Adapt. Syst. (2010)

    Google Scholar 

  9. Dignum, V., Dignum, F.: A logic for agent organization. In: Proceedings of the FAMAS@Agents 2007 (2007)

    Google Scholar 

  10. Argente, E., Giret, A., Valero, S., Julian, V., Botti, V.: Survey of MAS methods and platforms focusing on organizational concepts. In: Vitria, J., Radeva, P., Aguilo, I. (eds.) Recent Advances in Artificial Intelligence Research and Development, Frontiers in Artificial Intelligence and Applications, pp. 309–316 (2004)

    Google Scholar 

  11. Zacarias, E., de Almeida, L.R., Prettz, J.B., da Costa, J.P.C., de Freitas, E.P., Canedo, E.D., de Sousa, R.T.: Optimizing the access records of students in the Moodle virtual learning environment database. In: IFAC-PapersOnLine, vol. 49, no. 30, pp. 98–101 (2016). ISSN 2405-8963

    Article  MathSciNet  Google Scholar 

  12. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organizational view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J. (eds.) AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24620-6_15

    Chapter  Google Scholar 

  13. Fernández-Riverola, F., Díaz, F., Corchado, J.M.: Reducing the memory size of a fuzzy case-based reasoning system applying rough set techniques. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(1), 138–146 (2007). https://doi.org/10.1109/TSMCC.2006.876058

    Article  Google Scholar 

  14. FIPA Agent Management Specification (2001). http://www.fipa.org/specs/fipa00023/

  15. Fyfe, C., Corchado, J.: A comparison of Kernel methods for instantiating case based reasoning systems. Adv. Eng. Inform. 16(3), 165–178 (2002). https://doi.org/10.1016/S1474-0346(02)00008-3

    Article  Google Scholar 

  16. Fyfe, C., Corchado, J.M.: Automating the construction of CBR systems using kernel methods. Int. J. Intell. Syst. 16(4), 571–586 (2001). https://doi.org/10.1002/int.1024

    Article  MATH  Google Scholar 

  17. García, E., Rodríguez, S., Martín, B., Zato, C., Pérez, B.: MISIA: middleware infrastructure to simulate intelligent agents. Adv. Intell. Soft Comput. 91 (2011). https://doi.org/10.1007/978-3-642-19934-9_14

  18. García, Ó., Alonso, R.S., Prieto, J., Corchado, J.M.: Energy efficiency in public buildings through context-aware social computing. Sensors 17, 826 (2017)

    Article  Google Scholar 

  19. Giraffa L.M.M., Viccari, R.M.: The use of agents techniques on intelligent tutoring systems. In: Computer Science, SCCC 1998 (1998)

    Google Scholar 

  20. Giuffra, C.E.P., Silveira, R.A., Nakayama, M.K.: Using agent based adaptive learning environments for knowledge sharing management. Int. J. Knowl. Learn. (Print) 10, 278–295 (2015)

    Article  Google Scholar 

  21. Glez-Bedia, M., Corchado, J.M., Corchado, E.S., Fyfe, C.: Analytical model for constructing deliberative agents. Int. J. Eng. Intell. Syst. Electr. Eng. Commun. 10(3) (2002)

    Google Scholar 

  22. Glez-Peña, D., Díaz, F., Hernández, J.M., Corchado, J.M., Fdez-Riverola, F.: geneCBR: A translational tool for multiple-microarray analysis and integrative information retrieval for aiding diagnosis in cancer research. BMC Bioinform. 10 (2009). https://doi.org/10.1186/1471-2105-10-187

    Article  Google Scholar 

  23. Hübner, J.F., Sichman, J.S., Boissier, O.: S-Moiseþ: a middleware for developing organised multi-agent systems. In: Boissier, O. (ed.) AAMAS 2005. LNCS (LNAI), vol. 3913, pp. 64–77. Springer, Heidelberg (2006). https://doi.org/10.1007/11775331_5

    Chapter  Google Scholar 

  24. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222 (2001)

    Article  Google Scholar 

  25. Rymanova, I., Baryshnikov, N., Grishaeva, A.: E-course based on the LMS Moodle for English language teaching: development and implementation of results. In: Procedia - Social and Behavioral Sciences, vol. 206, pp. 236–240 (2015). ISSN 1877-0428

    Article  Google Scholar 

  26. Bajo, J., Corchado, J.M., Botti, V., Ossowski, S.: Practical applications of agents and MAS: methods, techniques and tools for open MAS. J. Phys. Agents 3, 1–2 (2009)

    Google Scholar 

  27. Jason Developers: Jason a Java-based interpreter for an extended version of AgentSpeak (2017)

    Google Scholar 

  28. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and development. Auton. Agents Multi-Agent Syst. J. 1(1), 7–38 (1998). (Ed. by, N.R. Jennings, K. Sycara, M. Georgeff)

    Article  Google Scholar 

  29. Agüero, J., Rebollo, M., Carrascosa, C., Julián, V.: MDD-approach for developing pervasive systems based on service-oriented multi-agent systems. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 2(3), 55 (2013). ISSN: 2255–2863

    Google Scholar 

  30. Rezgui, K., Mhiri, H., Ghédira, K.: Extending Moodle functionalities with ontology-based competency management. Procedia Comput. Sci. 35, 570–579 (2014). ISSN 1877-0509. https://doi.org/10.1016/j.procs.2014.08.138

    Article  Google Scholar 

  31. Kurt, V.: The relative effectiveness of human tutoring. Intell. Tutor. Syst. Other Tutor. Syst. Educ. Psychol. 46(4), 197–221 (2011)

    Google Scholar 

  32. Laza, R., Pavn, R., Corchado, J.M.: A reasoning model for CBR_BDI agents using an adaptable fuzzy inference system. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.L. (eds.) TTIA 2003. LNCS, vol. 3040, pp. 96–106. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24620-6_15

    Chapter  Google Scholar 

  33. Becerra-Bonache, L., López, M.D.J.: Linguistic models at the crossroads of agents, learning and formal languages. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 3(4), 67 (2014). ISSN 2255-2863

    Article  Google Scholar 

  34. Li, T., Sun, S., Bolić, M., Corchado, J.M.: Algorithm design for parallel implementation of the SMC-PHD filter. Sig. Process. 119, 115–127 (2016). https://doi.org/10.1016/j.sigpro.2015.07.013

    Article  Google Scholar 

  35. Li, T., Sun, S., Corchado, J. M., Siyau, M.F.: Random finite set-based Bayesian filters using magnitude-adaptive target birth intensity. In FUSION 2014 - 17th International Conference on Information Fusion (2014)

    Google Scholar 

  36. Lima, A.C.E.S., De Castro, L.N., Corchado, J.M.: A polarity analysis framework for Twitter messages. Appl. Math. Comput. 270, 756–767 (2015). https://doi.org/10.1016/j.amc.2015.08.059

    Article  Google Scholar 

  37. Marcuzzo, M.M.V., Gubiani, J.S., Lopes, L.F D.: A satisfação dos alunos de educação a distância em uma Instituição de Ensino Superior. Centro de Processamento de Dados, UFSM (2015)

    Google Scholar 

  38. Gómez, L.M., Cáceres, M.N.: Applying data mining for sentiment analysis in music. In: De La Prieta, F., et al. (eds.) PAAMS 2017. AISC, vol. 619, pp. 198–205. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61578-3_20

    Chapter  Google Scholar 

  39. Mata, A., Corchado, J.M.: Forecasting the probability of finding oil slicks using a CBR system. Expert Syst. Appl. 36(4), 8239–8246 (2009). https://doi.org/10.1016/j.eswa.2008.10.003

    Article  Google Scholar 

  40. Méndez, J.R., Fdez-Riverola, F., Díaz, F., Iglesias, E.L., Corchado, J.M.: A comparative performance study of feature selection methods for the anti-spam filtering domain. In: Perner, P. (ed.) ICDM 2006. LNCS (LNAI), vol. 4065, pp. 106–120. Springer, Heidelberg (2006). https://doi.org/10.1007/11790853_9

    Chapter  Google Scholar 

  41. Oxman, S., Wong, W.: White Paper: Adaptive Learning Systems. Integrated Education Solutions (2014)

    Google Scholar 

  42. Chamoso, P., De La Prieta, F.: Simulation environment for algorithms and agents evaluation. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 4(3) (2015). ISSN 2255-2863

    Google Scholar 

  43. Chamoso, P., Rivas, A., Rodríguez, S., Bajo, J.: Relationship recommender system in a business and employment-oriented social network. Inf. Sci. 433–434, 204–220 (2018). https://doi.org/10.1016/j.ins.2017.12.050

    Article  Google Scholar 

  44. De Oliveira, P.M., Valdeni De Lima, J., Krug Wives, L., Marilza Pernas, A., Gasparini, I., Fernández, A., Díaz, A.: Adaptatividade geocultural em ambientes virtuais de aprendizagem. RIED 7(1), 83–109 (2014)

    Google Scholar 

  45. Palomino, C.G., Nunes, C.S., Silveira, R.A., González, S.R., Nakayama, M.K.: Adaptive agent-based environment model to enable the teacher to create an adaptive class. In: Vittorini, P., et al. (eds.) MIS4TEL 2017. AISC, vol. 617, pp. 20–27. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60819-8_3

    Chapter  Google Scholar 

  46. Marín, P.A.R., Duque, N., Ovalle, D.: Multi-agent system for knowledge-based recommendation of learning objects. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 4(1), 80–89 (2015). ISSN 2255-2863

    Article  Google Scholar 

  47. Pavon, J., Gomez-Sanz, J., Fuentes., R.: The INGENIAS Methodology and Tools, pp. 236–276. Idea Group Publishing, Hershey (2005). Article IX

    Google Scholar 

  48. Pérez de la Cruz, J.L, Pavón, J., ANA-MAS: Agentes Software y Sistemas Multi-Agente: Conceptos, Arquitecturas y Aplicaciones. Pearson Prentice-Hall, Upper Saddle River (2005)

    Google Scholar 

  49. Redondo-Gonzalez, E., De Castro, L.N., Moreno-Sierra, J., Maestro De Las Casas, M.L., Vera-Gonzalez, V., Ferrari, D.G., Corchado, J.M.: Bladder carcinoma data with clinical risk factors and molecular markers: a cluster analysis. BioMed. Res. Int. (2015). https://doi.org/10.1155/2015/168682

  50. Silveira, R., Da Silva Bitencourt, Gelaim, G.K., Marchi, J., De La Prieta, F.: Towards a model of open and reliable cognitive multiagent systems: dealing with trust and emotions. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 4(3), 57 (2015). ISSN 2255-2863

    Article  Google Scholar 

  51. Rodríguez, S., De La Prietade, F., Tapia, D.I., Corchado, J.M.: Agents and computer vision for processing stereoscopic images. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010. LNCS (LNAI), vol. 6077, pp. 93–100. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13803-4_12

    Chapter  Google Scholar 

  52. Rodríguez, S., Gil, O., De La Prieta, F., Zato, C., Corchado, J. M., Vega, P., Francisco, M.: People detection and stereoscopic analysis using MAS. In: INES 2010 – Proceedings of 14th International Conference on Intelligent Engineering Systems (2010). https://doi.org/10.1109/INES.2010.5483855

  53. Tapia, D.I., Corchado, J.M.: An ambient intelligence based multi-agent system for alzheimer health care. Int. J. Ambient Comput. Intell. 1(1), 15–26 (2009). https://doi.org/10.4018/jaci.2009010102

    Article  Google Scholar 

  54. U.S. Department of Education, Office of Educational Technology: Expanding Evidence Approaches for Learning in a Digital World, Washington, D.C. (2013)

    Google Scholar 

  55. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10(2), 115–152 (1995)

    Article  Google Scholar 

  56. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: the Gaia methodology. ACM Trans. Softw. Eng. Methodol. (TOSEM) 12(3), 317–370 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by project “IOTEC: Development of Technological Capacities around the Industrial Application of Internet of Things (IoT)”. 0123_IOTEC_3_E. Project financed with FEDER funds, Interreg Spain-Portugal (PocTep).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodríguez, S., Palomino, C.G., Chamoso, P., Silveira, R.A., Corchado, J.M. (2018). How to Create an Adaptive Learning Environment by Means of Virtual Organizations. In: Uden, L., Liberona, D., Ristvej, J. (eds) Learning Technology for Education Challenges. LTEC 2018. Communications in Computer and Information Science, vol 870. Springer, Cham. https://doi.org/10.1007/978-3-319-95522-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95522-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95521-6

  • Online ISBN: 978-3-319-95522-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics