Lecture Notes in Computer Science

10951

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Josef Kittler, UK Friedemann Mattern, Switzerland Moni Naor, Israel Bernhard Steffen, Germany Doug Tygar, USA Takeo Kanade, USA Jon M. Kleinberg, USA John C. Mitchell, USA C. Pandu Rangan, India Demetri Terzopoulos, USA Gerhard Weikum, Germany

Formal Methods

Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, *University of York, UK*Marie-Claude Gaudel, *Université de Paris-Sud, France*

Subline Advisory Board


Manfred Broy, *TU Munich, Germany*Annabelle McIver, *Macquarie University, Sydney, NSW, Australia*Peter Müller, *ETH Zurich, Switzerland*Erik de Vink, *Eindhoven University of Technology, The Netherlands*Pamela Zave, *AT&T Laboratories Research, Bedminster, NJ, USA*

More information about this series at http://www.springer.com/series/7408

Klaus Havelund · Jan Peleska Bill Roscoe · Erik de Vink (Eds.)

Formal Methods

22nd International Symposium, FM 2018 Held as Part of the Federated Logic Conference, FloC 2018 Oxford, UK, July 15–17, 2018 Proceedings

Editors
Klaus Havelund

NASA Jet Propulsion Laboratory
Pasadena, CA
USA

Jan Peleska

University of Bremen
Bremen
Germany

Bill Roscoe University of Oxford Oxford UK

Erik de Vink Eindhoven University of Technology Eindhoven The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-319-95581-0 ISBN 978-3-319-95582-7 (eBook) https://doi.org/10.1007/978-3-319-95582-7

Library of Congress Control Number: 2018947575

LNCS Sublibrary: SL2 - Programming and Software Engineering

© Springer International Publishing AG, part of Springer Nature 2018

Chapter "Formal Specification and Verification of Dynamic Parametrized Architectures" is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the chapter.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

FM 2018 was held in Oxford as part of FloC during July 15–17, with additional workshops on July 14 and during 18–19. It was a great pleasure to return to one of the spiritual homes of Formal Methods. This was the 22nd of a series stretching back to 1987. We are delighted to present its proceedings, once again published by Springer. FM is a core event for the formal methods community and brings together researchers working on both more theoretical aspects and industrial practice. Once again we had an Industry Day, or I-Day.

In all, there were 110 submitted papers for the main conference of which 35 were accepted, an acceptance rate of 32%. Kim G. Larsen, Annabelle McIver, and Leonardo de Moura gave invited talks. For I-Day, nine presenters were invited to share insights about applications of formal methods in industry.

Seven workshops were associated with FM this year: F-IDE, Overture, QAPL, AVoCS, REFINE, TLA+, and VaVas.

We offer our sincere thanks to all who helped make the conference a success and assisted with the preparation of these proceedings. This includes the FM committee chaired by Ana Cavalcanti, the FloC Organizing Committee led by Moshe Vardi, Daniel Kroening, and Marta Kwiatkowska, as well as the staff and volunteers who supported this event. Naturally, we also thank the Program Committee members and others who put so much effort into ensuring the quality of the program, as well as all authors who submitted papers.

FLoC had many sponsors including Oxford University Computer Science Department, Springer, and Diffblue. We thank them all.

June 2018

Erik de Vink Jan Peleska Bill Roscoe Klaus Havelund

Organization

Program Chairs

Jan Peleska University of Bremen, Germany Bill Roscoe University of Oxford, UK

Workshop Chairs

Maurice ter Beek CNR/ISTI, Italy

Helen Treharne University of Surrey, UK

Industry Day Chairs

Klaus Havelund NASA Jet Propulsion Laboratory, USA

Jan Peleska University of Bremen, Germany

Ralf Pinger Siemens, Germany

Doctoral Symposium Chairs

Eerke Boiten De Montfort University, UK Fatiha Zaïdi Université Paris-Sud XI, France

Organizing Committee

Erik de Vink Eindhoven University of Technology, The Netherlands

(General Chair)

Mahmoud Talebi (Website) Eindhoven University of Technology, The Netherlands

Program Committee

Bernhard K. Aichernig TU Graz, Austria

Joerg Brauer Verified Systems International GmbH, Germany

Ana Cavalcanti University of York, UK
Frank De Boer CWI, The Netherlands
John Fitzgerald Newcastle University, UK

Martin Fraenzle Carl von Ossietzky Universität Oldenburg, Germany

Vijay Ganesh University of Waterloo, Canada
Diego Garbervetsky University of Buenos Aires, Argentina
Dimitra Giannakopoulou NASA Ames Research Center, USA

Thomas Gibson-Robinson University of Oxford, UK

Stefania Gnesi ISTI-CNR, Italy

VIII Organization

Klaus Havelund
Anne E. Haxthausen
Ian J. Hayes
The University of Queensland, Australia

NASA Jet Propulsion Laboratory, USA
Technical University of Denmark, Denmark
The University of Queensland, Australia

Constance Heitmeyer Naval Research Laboratory, USA

Jozef Hooman TNO-ESI and Radboud University Nijmegen,

The Netherlands

Laura Humphrey Air Force Research Laboratory, USA Fuyuki Ishikawa National Institute of Informatics, Japan

Einar Broch Johnsen University of Oslo, Norway Cliff Jones Newcastle University, UK

Joost-Pieter Katoen RWTH Aachen University, Germany

Gerwin Klein NICTA and The University of New South Wales,

Australia

Laura Kovacs Chalmers University of Technology, Sweden

Peter Gorm Larsen
Yves Ledru
Rustan Leino
Elizabeth Leonard
Martin Leucker
Michael Leuschel
Zhiming Liu

Aarhus University, Denmark
Université Grenoble Alpes, France
Amazon Web Services, USA
Naval Research Laboratory, USA
University of Lübeck, Germany
University of Düsseldorf, Germany
Southwest University, China

Tiziana Margaria University of Limerick and Lero, Ireland

Mieke Massink ISTI-CNR, Italy

Annabelle McIver Macquarie University, Australia
Dominique Mery Université de Lorraine, LORIA, France

Mohammad Reza Mousavi
Peter Müller
Colin O'Halloran
Jose Oliveira
Olaf Owe
Sam Owre
University of Leicester, UK
ETH Zurich, Switzerland
D-RisQ Software Systems, UK
University of Minho, Portugal
University of Oslo, Norway
SRI International, USA

Jan Peleska TZI, University of Bremen, Germany

Alexandre Petrenko CRIM, Canada

Anna Philippou University of Cyprus, Cyprus

Ralf Pinger Siemens, Germany

Elvinia Riccobene University of Milan, Italy Bill Roscoe University of Oxford, UK

Grigore Rosu University of Illinois at Urbana-Champaign, USA

Augusto Sampaio Federal University of Pernambuco, Brazil Gerardo Schneider Chalmers University of Technology, Sweden

Natasha Sharygina University of Lugano, Switzerland Ana Sokolova University of Salzburg, Austria

Jun Sun Singapore University of Technology and Design,

Singapore

Stefano Tonetta FBK-irst, Italy

Farn Wang National Taiwan University, Taiwan

Heike Wehrheim Michael Whalen Jim Woodcock Hüsnü Yenigün Fatiha Zaidi Gianluigi Zavattaro University of Paderborn, Germany University of Minnesota, USA University of York, UK Sabanci University, Turkey Université Paris-Sud, France University of Bologna, Italy

Additional Reviewers

Abbyaneh, Alireza Agogino, Adrian Aldini, Alessandro Antignac, Thibaud Antonino, Pedro Araujo, Hugo Arcaini, Paolo Archer, Myla Asadi, Sepideh Astrauskas, Vytautas Avellaneda, Florent Basile, Davide Baxter, James Berger, Philipp Blicha, Martin Bodeveix, Jean-Paul Boudjadar, Jalil Braghin, Chiara Bugariu, Alexandra Byun, Taejoon Carvalho, Gustavo Castaño, Rodrigo Chen, Taolue Chen, Yu-Ting Chen, Zhenbang

Chieri, Zhenbang
Chimento, Jesus Mauricio
Ciancia, Vincenzo
Ciolek, Daniel
Colvin, Robert
de Gouw, Stijn
Dodds, Mike
Ehlers, Rüdiger

Even-Mendoza, Karine

Fages, François

Eilers, Marco

Fava, Daniel Ferrère, Thomas Foltzer, Adam Foster, Simon Gazda, Maciej Ghasemi, Mahsa Ghassabani, Elaheh Gomez-Zamalloa, Miguel Govind, Hari Günther, Henning Hagemann, Willem Henrio, Ludovic Holzer, Andreas Hyvärinen, Antti Höfner, Peter Jaafar, Fehmi Junges, Sebastian Katis, Andreas

Fantechi, Alessandro

Kulik, Tomas König, Jürgen Laarman, Alfons Latella, Diego Legunsen, Owolabi Lester, Martin Mariusz

Khakpour, Narges

Kharraz, Karam

Kiesl, Benjamin

Kotelnikov, Evgenii

Kouzapas, Dimitrios

Krings, Sebastian

Li, Guangyuan Li, Ian

Liang, Jimmy Liu, Si Longuet, Delphine Lucanu, Dorel

Macedo, Hugo Daniel

Macedo, Hugo Danie Macedo, Nuno Madeira, Alexandre Marescotti, Matteo Markin, Grigory Matheja, Christoph Mathur, Umang Mauro, Jacopo Mazzanti, Franco Meinicke, Larissa Merz, Stephan Monahan, Rosemary Mota, Alexandre Neubauer, Felix

Nguena-Timo, Omer

Nguyen, Huu Nghia

Noll, Thomas Oortwijn, Wytse Palmskog, Karl Pardo, Raúl Pauck, Felix Pedro, André Pena, Lucas Proenca, Jose Qu, Hongyang Robillard, Simon Scheffel, Torben

Schmidt, Joshua Schmitz, Malte Schneider, David Schoepe, Daniel Scott, Joe

Scott, Joe Sewell, Thomas

X Organization

Sharma, Arnab Singh, Neeraj Steffen, Martin Stewart, Danielle Stolz, Volker Stumpf, Johanna Beate Swaminathan, Mani Syeda, Hira Tabaei, Mitra Taha, Safouan Ter Beek, Maurice H.
Ter-Gabrielyan, Arshavir
Thoma, Daniel
Thorstensen, Evgenij
Thule, Casper
Toews, Manuel
Tribastone, Mirco
Tschaikowski, Max
Tveito, Lars
van Glabbeek, Rob

Voisin, Frederic Winter, Kirsten Yakovlev, Alex Ye, Kangfeng Yovine, Sergio Zeyda, Frank Zhao, Liang Zoppi, Edgardo Zulkoski, Ed

Contents

Processing Text for Privacy: An Information Flow Perspective	3
20 Years of Real Real Time Model Validation	22
FM 2018 Main Conference	
Deadlock Detection for Actor-Based Coroutines	39
An Algebraic Approach for Reasoning About Information Flow Arthur Américo, Mário S. Alvim, and Annabelle McIver	55
Towards 'Verifying' a Water Treatment System	73
FSM Inference from Long Traces	93
A Weakness Measure for GR(1) Formulae	110
Producing Explanations for Rich Logics	129
The Compound Interest in Relaxing Punctuality	147
IPL: An Integration Property Language for Multi-model Cyber-physical Systems	165
Timed Epistemic Knowledge Bases for Social Networks	185
Optimal and Robust Controller Synthesis: Using Energy Timed Automata with Uncertainty	203

Encoding Fairness in a Synchronous Concurrent Program Algebra	222
A Wide-Spectrum Language for Verification of Programs on Weak Memory Models	240
Operational Semantics of a Weak Memory Model with Channel Synchronization	258
Stepwise Development and Model Checking of a Distributed Interlocking System - Using RAISE	277
Resource-Aware Design for Reliable Autonomous Applications with Multiple Periods	294
Verifying Auto-generated C Code from Simulink: An Experience Report in the Automotive Domain	312
QFLan: A Tool for the Quantitative Analysis of Highly Reconfigurable Systems	329
Modular Verification of Programs with Effects and Effect Handlers in Coq Thomas Letan, Yann Régis-Gianas, Pierre Chifflier, and Guillaume Hiet	338
Combining Tools for Optimization and Analysis of Floating-Point Computations	355
A Formally Verified Floating-Point Implementation of the Compact Position Reporting Algorithm	364
Formal Verification of Automotive Simulink Controller Models: Empirical Technical Challenges, Evaluation and Recommendations Johanna Nellen, Thomas Rambow, Md Tawhid Bin Waez, Erika Ábrahám, and Joost-Pieter Katoen	382
Multi-robot LTL Planning Under Uncertainty	399

Con	ntents	XII
Vector Barrier Certificates and Comparison Systems		418
Timed Vacuity		438
Falsification of Cyber-Physical Systems Using Deep Reinforcement Learning		456
Dynamic Symbolic Verification of MPI Programs		466
To Compose, or Not to Compose, That Is the Question: An Analysis of Compositional State Space Generation		485
View Abstraction for Systems with Component Identities		505
Compositional Reasoning for Shared-Variable Concurrent Programs . Fuyuan Zhang, Yongwang Zhao, David Sanán, Yang Liu, Alwen T Shang-Wei Lin, and Jun Sun		523
Statistical Model Checking of LLVM Code		542
SDN-Actors: Modeling and Verification of SDN Programs Elvira Albert, Miguel Gómez-Zamalloa, Albert Rubio, Matteo Sammar and Alexandra Silva		550
CompoSAT: Specification-Guided Coverage for Model Finding Sorawee Porncharoenwase, Tim Nelson, and Shriram Krishnamura		568
Approximate Partial Order Reduction		588
A Lightweight Deadlock Analysis for Programs with Threads and Reentrant Locks		608
Formal Specification and Verification of Dynamic Parametrized Architectures		625

FM 2018 Industry Day

From Formal Requirements to Highly Assured Software for Unmanned Aircraft Systems	647
Interlocking Design Automation Using Prover Trident	653
Model-Based Testing for Avionics Systems	657
On Software Safety, Security, and Abstract Interpretation	662
Variant Analysis with QL	666
Object-Oriented Security Proofs	671
Z3 and SMT in Industrial R&D	675
Evidential and Continuous Integration of Software Verification Tools Tewodros A. Beyene and Harald Ruess	679
Disruptive Innovations for the Development and the Deployment of Fault-Free Software	686
Author Index	691