Skip to main content

Automatic Segmentation of Microcalcification Clusters

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 894))

Included in the following conference series:

Abstract

Early detection of microcalcification (MC) clusters plays a crucial role in enhancing breast cancer diagnosis. Two automated MC cluster segmentation techniques are proposed based on morphological operations that incorporate image decomposition and interpolation methods. For both approaches, initially the contrast between the background tissue and MC cluster was increased and subsequently morphological operations were used. Evaluation was based on the Dice similarity scores and the results of MC cluster classification. A total number of 248 (131 benign and 117 malignant) and 24 (12 benign and 12 malignant) biopsy-proven digitized mammograms were considered from the DDSM and MIAS databases, which showed a classification accuracy of \(94.48\pm 1.11\)% and \(100.00\pm 0.00\)% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Breast Cancer Statistics. https://breast-cancer.canceraustralia.gov.au/statistics. Accessed 14 Feb 2018

  2. Duarte, M.A., Alvarenga, A.V., Azevedo, C.M., Calas, M.J.G., Infantosi, A.F., Pereira, W.C.: Evaluating geodesic active contours in microcalcifications segmentation on mammograms. Comput. Methods Programs Biomed. 122(3), 304–315 (2015)

    Article  Google Scholar 

  3. Sridhar, B., Reddy, K.V.V.S., Prasad, A.M.: Detection of lesions in medical image using an artificial neural networks and morphological filters. Comput. Sci. Telecommun. 43(3), 12–19 (2014)

    Google Scholar 

  4. Arodz, T., Kurdziel, M., Popiela, T.J., Sevre, E.O., Yuen, D.A.: Detection of clustered microcalcifications in small field digital mammography. Comput. Methods Programs Biomed. 81(1), 56–65 (2006)

    Article  Google Scholar 

  5. Betal, D., Roberts, N., Whitehouse, G.H.: Segmentation and numerical analysis of microcalcifications on mammograms using mathematical morphology. Br. J. Radiol. 70(837), 903–917 (2000)

    Article  Google Scholar 

  6. Halkiotis, S., Botsis, T., Rangoussi, M.: Automatic detection of clustered microcalcifications in digital mammograms using mathematical morphology and neural networks. Sig. Process. 87(7), 1559–1568 (2007)

    Article  Google Scholar 

  7. Oliver, A., Torrent, A., Lladó, X., Tortajada, M., Tortajada, L., Sentís, M., Freixenet, J., Zwiggelaar, R.: Automatic microcalcification and cluster detection for digital and digitised mammograms. Knowl.-Based Syst. 28, 68–75 (2012)

    Article  Google Scholar 

  8. Chen, Z., Strange, H., Oliver, A., Denton, E.R., Boggis, C., Zwiggelaar, R.: Topological modeling and classification of mammographic microcalcification clusters. IEEE Trans. Biomed. Eng. 62(4), 1203–1214 (2015)

    Article  Google Scholar 

  9. Batchelder, K.A., Tanenbaum, A.B., Albert, S., Guimond, L., Kestener, P., Arneodo, A., Khalil, A.: Wavelet-based 3D reconstruction of microcalcification clusters from two mammographic views: new evidence that fractal tumors are malignant and Euclidean tumors are benign. PloS One 9(9), e107580 (2014)

    Article  Google Scholar 

  10. Mohanalin, J., Kalra, P.K., Kumar, N.: Microcalcification segmentation using normalized Tsallis entropy: an automatic “q” calculation by exploiting type II fuzzy sets. IETE J. Res. 55(2), 90–96 (2009)

    Article  Google Scholar 

  11. Samala, R.K., Chan, H.P., Hadjiiski, L.M., Cha, K., Helvie, M.A.: Deep-learning convolution neural network for computer-aided detection of microcalcifications in digital breast tomosynthesis. In: Medical Imaging 2016: Computer-Aided Diagnosis, vol. 9785, p. 97850Y (2016)

    Google Scholar 

  12. Wang, J., Yang, X., Cai, H., Tan, W., Jin, C., Li, L.: Discrimination of breast cancer with microcalcifications on mammography by deep learning. Sci. Rep. Ann. Stat. 6, 27327 (2016)

    Article  Google Scholar 

  13. Mishra, S., Patra, R., Pattanayak, A., Pradhan, S.: Block based enhancement of satellite images using sharpness indexed filtering. IOSR J. Electron. Commun. Eng. 8, 20–24 (2013)

    Article  Google Scholar 

  14. Papadopoulos, A., Fotiadis, D.I., Likas, A.: Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines. Artif. Intell. Med. 34(2), 141–150 (2005)

    Article  Google Scholar 

  15. Chan, H.P., Lo, S.C.B., Sahiner, B., Lam, K.L., Helvie, M.A.: Computer aided detection of mammographic microcalcifications: pattern recognition with an artificial neural network. Med. Phys. 22(10), 1555–1567 (1995)

    Article  Google Scholar 

  16. Kopans, D.B.: Breast Imaging. Lippincott Williams and Wilkins, Philadelphia (1989)

    Google Scholar 

  17. Srensen, T.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol. Skr. 5, 1–34 (1948)

    Google Scholar 

  18. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  19. The SrensenDice index. https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient#cite_note-zijdenbos-6. Accessed 2 Feb 2018

  20. Alam, N., Zwiggelaar, R.: Automatic classification of clustered microcalcifications in digitized mammogram using ensemble learning. In: 14th International Workshop on Breast Imaging (IWBI 2018), vol. 10718, p. 1071816. International Society for Optics and Photonics (2018)

    Google Scholar 

  21. Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., Boggis, C., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S., Taylor, P.: Mammographic Image Analysis Society (MIAS) database v1. 21 (2015)

    Google Scholar 

  22. Heath, M., Bowyer, K., Kopans, D., Kegelmeyer, P., Moore, R., Chang, K., Munishkumaran, S.: Current status of the digital database for screening mammography. In: Karssemeijer, N., Thijssen, M., Hendriks, J., van Erning, L. (eds.) Digital Mammography. CIVI, vol. 13, pp. 457–460. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5318-8_75

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nashid Alam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alam, N., Oliver, A., Denton, E.R.E., Zwiggelaar, R. (2018). Automatic Segmentation of Microcalcification Clusters. In: Nixon, M., Mahmoodi, S., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2018. Communications in Computer and Information Science, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-95921-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95921-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95920-7

  • Online ISBN: 978-3-319-95921-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics