Skip to main content

Identification of Hotspots in Protein-Protein Interactions Based on Recursive Feature Elimination

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10954))

Included in the following conference series:

  • 2806 Accesses

Abstract

The study of protein-protein interactions and protein structure through computational methods is critical to understand protein function. Hot spot residues play an important role in bioinformatics to reveal life activities. However, conventional hot spots prediction methods may face great challenges. This paper proposes a hot spot prediction method based on feature selection method SVM-RFE to improve the training performance. SMOTE based oversampling is used to adds new samples to avoid an overfitting classifier. SVM-RFE is then invoked to obtained optimal feature subset. Finally, a feature-based SVM is created to predict the hot spots. Experimental results indicate that the performance of hot spots prediction has been significantly improved compared with the previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giot, L., Bader, J.S., Brouwer, C., Chaudhuri, A., Kuang, B.: A protein interaction map of Drosophila Melanogaster. Science 302, 1727–1736 (2003)

    Article  Google Scholar 

  2. Lin, X.L., Zhang, X.L., Zhou, F.L.: Protein structure prediction with local adjust tabu search algorithm. BMC Bioinform. 5(S15), S1 (2014)

    Article  Google Scholar 

  3. Sahu, S.S., Panda, G.: Efficient Localization of hot spots in proteins using a novel S-transform based filtering approach. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1235–1246 (2011)

    Article  Google Scholar 

  4. Keskin, O., Tuncbag, N., Gursoy, A.: Predicting protein-protein interactions from the molecular to the proteome level. Chem. Rev. 116(8), 4884–4909 (2016)

    Article  Google Scholar 

  5. Cho, K., Kim, D., Lee, D.: A feature-based approach to modeling protein-protein interaction hot spots. Nucl. Acids Res. 37(8), 2672–2687 (2009)

    Article  Google Scholar 

  6. Morrison, K.L., Weiss, G.A.: Combinatorial Alanine-scanning. Curr. Opin. Chem. Biol. 5(3), 302–307 (2001)

    Article  Google Scholar 

  7. Kortemme, T., Kim, D.E., Baker, D.: Computational Alanine scanning of protein-protein interfaces. Sci. STKE Signal Transduct. Knowl. Environ. (STKE) 2004(219), pl2 (2004)

    Article  Google Scholar 

  8. Bogan, A., Thorn, K.S.: Anatomy of ces. J. Mol. Biol. 280, 1–9 (1998)

    Article  Google Scholar 

  9. Kortemme, T., Baker, D.: A simple physical model for binding energy hot spots in protein-protein complexes. Proc. Nat. Acad. Sci. USA 99(22), 14116–14121 (2002)

    Article  Google Scholar 

  10. Ofran, Y., Rost, B.: ISIS: Interaction Sites Identified from Sequences. Bioinformatics 23, e13–e16 (2006)

    Article  Google Scholar 

  11. Darnell, S.J., Page, D., Mitchell, J.C.: An automated decision-tree approach to predicting protein interaction hot spots. Proteins 68(4), 813–823 (2007)

    Article  Google Scholar 

  12. Burgoyne, N.J., Jackson, R.M.: Predicting protein interaction sites: binding hot-spots in protein-protein and protein-ligand interfaces. Bioinformatics 22(11), 1335–1342 (2006)

    Article  Google Scholar 

  13. Barata, T.S., Zhang, C., Dalby, P.A., Brocchini, S., Zloh, M.: Identification of protein-excipient interaction hotspots using computational approaches. Int. J. Mol. Sci. 17(6), 853 (2016)

    Article  Google Scholar 

  14. Tuncbag, N., Gursoy, A., Keskin, O.: Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 25(12), 1513–1520 (2009)

    Article  Google Scholar 

  15. Keskin, O., Ma, B., Nussinov, R.: Hot regions in protein- protein interaction: the organization and contribution of structurally conserved hot spot residues. J. Mol. Biol. 345(5), 1281–1294 (2005)

    Article  Google Scholar 

  16. Xia, J.F., Zhao, X.M., Song, J., Huang, D.S.: APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. BMC Bioinform. 11, 174 (2010)

    Article  Google Scholar 

  17. Thorn, K.S., Bogan, A.A.: ASEdb: a data base of Alanine mutations and their effects on the free energy of binding in protein interactions. Bioinformatics 17(3), 284–285 (2001)

    Article  Google Scholar 

  18. Moal, I.H., Fernández-Recio, J.: SKEMPI: a Structural Kinetic and Energetic database of Mutant Protein Interactions and its use in empirical models. Bioinformatics 28(20), 2600–2607 (2012)

    Article  Google Scholar 

  19. Fischer, T.B., Arunachalam, K.V., Bailey, D., Mangual: The Binding Interface Database (BID): a compilation of amino acid hot spots in protein interfaces. Bioinformatics 19(11), 1453–1454 (2003)

    Article  Google Scholar 

  20. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    MATH  Google Scholar 

  21. Bermingham, M.L., Pongwong, R., Spiliopoulou, A., et al.: Application of high-dimensional feature selection: evaluation for genomic prediction in man. Sci. Rep. 5, 10312 (2015)

    Article  Google Scholar 

  22. Mihel, J., Sikic, M., Tomic, S., Jeren, B., Vlahovicek, K.: PSAIA-protein structure and interaction analyzer. BMC Struct. Biol. 8(1), 21 (2008)

    Article  Google Scholar 

  23. Ofran, Y., Ros, B.: ISIS: Interaction Sites Identified from Sequence. Bioinformatics 23(2), e13–e16 (2007)

    Article  Google Scholar 

  24. Guerois, R., Nielsen, J.E., Serrano, L.: Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320(2), 369–387 (2002)

    Article  Google Scholar 

  25. Darnell, S.J., Legault, L., Mitchell, J.C.: KFC server: interactive forecasting of protein interaction hot spots. Nucl. Acids Res. 36(suppl 2), W265–W269 (2008)

    Article  Google Scholar 

  26. Cho, K., Kim, D., Lee, D.: A feature-based approach to modeling protein–protein interaction hot spots. Nucl. Acids Res 37(8), 2672–2687 (2009)

    Article  Google Scholar 

  27. Zhang, S.H., Zhang, X.L.: Prediction of hot spots at protein-protein interface. Acta Biophysica Sinica 29(2), 1–12 (2013)

    Google Scholar 

Download references

Acknowledgment

The authors thank the members of Machine Learning and Artificial Intelligence Laboratory, School of Computer Science and Technology, Wuhan University of Science and Technology, for their helpful discussion within seminars. This work was supported in part by National Natural Science Foundation of China (No. 61502356, 61273225), by Hubei Province Natural Science Foundation of China (No. 2018CFB526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, X., Zhang, X., Zhou, F. (2018). Identification of Hotspots in Protein-Protein Interactions Based on Recursive Feature Elimination. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10954. Springer, Cham. https://doi.org/10.1007/978-3-319-95930-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95930-6_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95929-0

  • Online ISBN: 978-3-319-95930-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics