Skip to main content

Efficient Framework for Predicting ncRNA-Protein Interactions Based on Sequence Information by Deep Learning

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10955))

Included in the following conference series:

Abstract

The interactions between proteins and RNA (RPIs) play a crucial role in most cellular processes such as RNA stability and translation. Although there have been many high-throughput experiments recently to detect RPIs, these experiments are largely time-consuming and labor-intensive. Therefore, it is imminent to propose an efficient computational method to predict RPIs. In this study, we put forward a novel approach for predicting protein and ncRNA interactions based on sequences information only. By employing the bi-gram probability feature extraction method and k-mer algorithm, the represent features from protein and ncRNA were extracted. To evaluate the performance of the proposed model, two widely used datasets named RPI1807 and RPI2241 were trained with the adoption of random forest classifier by using five-fold cross-validation. The experimental results with the AUC of 0.992 and 0.947 on dataset RPI1807 and RPI2241 respectively indicated the effectiveness of our experimental approach for predicting RPIs, which provided the guidance for reference for future research in the biological field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wapinski, O., Chang, H.Y.: Long noncoding RNAs and human disease. Trends Cell Biol. 21(6), 354–361 (2011)

    Article  Google Scholar 

  2. Guttman, M., Amit, I., Garber, M., French, C., Lin, M.F., Feldser, D., Huarte, M., Zuk, O., Carey, B.W., Cassady, J.P.: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235), 223 (2009)

    Article  Google Scholar 

  3. Yu, F., Zheng, J., Mao, Y., Dong, P., Li, G., Lu, Z., Guo, C., Liu, Z., Fan, X.: Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis. Biochem. Biophys. Res. Commun. 463(4), 679–685 (2015)

    Article  Google Scholar 

  4. Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B.L., Barrell, D., Zadissa, A., Searle, S.: GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22(9), 1760–1774 (2012)

    Article  Google Scholar 

  5. Chen, X., You, Z.H., Yan, G.Y., Gong, D.W.: IRWRLDA: improved random walk with restart for lncRNA-disease association prediction. Oncotarget 7(36), 57919–57931 (2016)

    Google Scholar 

  6. Chen, X., Yan, C.C., Zhang, X., You, Z.H.: Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief. Bioinform. 18(4), 558 (2016)

    Google Scholar 

  7. Wang, Y.B., You, Z.H., Li, X., Jiang, T.H., Chen, X., Zhou, X., Wang, L.: Predicting protein-protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Mol. BioSyst. 13(7), 1336–1344 (2017)

    Article  Google Scholar 

  8. Li, S., You, Z.H., Guo, H., Luo, X., Zhao, Z.Q.: Inverse-free extreme learning machine with optimal information updating. IEEE Trans. Cybern. 46(5), 1229 (2016)

    Article  Google Scholar 

  9. Lei, W., You, Z.H., Xing, C., Li, J.Q., Xin, Y., Wei, Z., Yuan, H.: An ensemble approach for large-scale identification of protein-protein interactions using the alignments of multiple sequences. Oncotarget 8(3), 5149–5159 (2016)

    Google Scholar 

  10. Huang, Q., You, Z., Zhang, X., Zhou, Y.: Prediction of protein-protein interactions with clustered amino acids and weighted sparse representation. Int. J. Mol. Sci. 16(5), 10855–10869 (2015)

    Article  Google Scholar 

  11. Huang, Y.A., You, Z.H., Chen, X.: A systematic prediction of drug-target interactions using molecular fingerprints and protein sequences. Curr. Protein Pept. Sci. 5(19), 468–478 (2017)

    Google Scholar 

  12. You, Z.H., Huang, Z.A., Zhu, Z., Yan, G.Y., Li, Z.W., Wen, Z., Chen, X.: PBMDA: a novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput. Biol. 13(3), e1005455 (2017)

    Article  Google Scholar 

  13. Li, Z.W., You, Z.H., Chen, X., Li, L.P., Huang, D.S., Yan, G.Y., Nie, R., Huang, Y.A.: Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier. Oncotarget 8(14), 23638 (2017)

    Google Scholar 

  14. An, J.Y., You, Z.H., Chen, X., Huang, D.S., Yan, G., Wang, D.F.: Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information. Mol. BioSyst. 12(12), 3702 (2016)

    Article  Google Scholar 

  15. An, J.Y., You, Z.H., Chen, X., Huang, D.S., Li, Z.W., Liu, G., Wang, Y.: Identification of self-interacting proteins by exploring evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix. Oncotarget 7(50), 82440–82449 (2016)

    Article  Google Scholar 

  16. Lei, Y.K., You, Z.H., Ji, Z., Zhu, L., Huang, D.S.: Assessing and predicting protein interactions by combining manifold embedding with multiple information integration. BMC Bioinform. 13(S7), S3 (2012)

    Article  Google Scholar 

  17. You, Z.H., Lei, Y.K., Gui, J., Huang, D.S., Zhou, X.: Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics 26(21), 2744 (2010)

    Article  Google Scholar 

  18. You, Z.H., Zhu, L., Zheng, C.H., Yu, H.J., Deng, S.P., Ji, Z.: Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set. BMC Bioinform. 15(S15), S9 (2014)

    Article  Google Scholar 

  19. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33(8), 831–838 (2015)

    Article  Google Scholar 

  20. Pan, X., Fan, Y.X., Yan, J., Shen, H.B.: IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction. BMC Genom. 17(1), 582 (2016)

    Article  Google Scholar 

  21. Chen, H., Huang, Z.: Medical image feature extraction and fusion algorithm based on K-SVD. In: Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2015, GuangDong, pp. 333–337 (2015)

    Google Scholar 

  22. Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: The database of interacting proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004)

    Article  Google Scholar 

  23. Chatraryamontri, A., Breitkreutz, B.J., Oughtred, R., Boucher, L., Heinicke, S., Chen, D., Stark, C., Breitkreutz, A., Kolas, N., O’Donnell, L.: The BioGRID interaction database: 2015 update. Nucleic Acids Res. 43, D470 (2015)

    Article  Google Scholar 

  24. Suresh, V., Liu, L., Adjeroh, D., Zhou, X.: Revealing protein–lncRNA interaction. Brief. Bioinform. 17, 106 (2015)

    Google Scholar 

  25. Paliwal, K.K., Sharma, A., Lyons, J., Dehzangi, A.: A tri-gram based feature extraction technique using linear probabilities of position specific scoring matrix for protein fold recognition. IEEE Trans. Nanobiosci. 13(1), 44–50 (2014)

    Article  Google Scholar 

  26. You, Z.H., Zhou, M.C., Xin, L., Shuai, L.: Highly efficient framework for predicting interactions between proteins. IEEE Trans. Cybern. PP(99), 1–13 (2016)

    Google Scholar 

  27. Huang, Y.A., Chen, X., You, Z.H., Huang, D.S., Chan, K.C.C.: ILNCSIM: improved lncRNA functional similarity calculation model. Oncotarget 7(18), 25902–25914 (2016)

    Google Scholar 

  28. Zhu, L., You, Z.H., Huang, D.S., Wang, B.: t-LSE: a novel robust geometric approach for modeling protein-protein interaction networks. PLoS ONE 8(4), e58368 (2013)

    Article  Google Scholar 

  29. Zhu, L., You, Z.H., Huang, D.S.: Increasing the reliability of protein–protein interaction networks via non-convex semantic embedding. Neurocomputing 121(18), 99–107 (2013)

    Article  Google Scholar 

  30. You, Z.H., Yin, Z., Han, K., Huang, D.S., Zhou, X.: A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network. BMC Bioinform. 11(1), 1–13 (2010)

    Article  Google Scholar 

  31. Xia, J.F., You, Z.H., Wu, M., Wang, S.L., Zhao, X.M.: Improved method for predicting phi-turns in proteins using a two-stage classifier. Protein Pept. Lett. 17(9), 1117 (2010)

    Article  Google Scholar 

  32. You, Z.H., Li, X., Chan, K.C.: An improved sequence-based prediction protocol for protein-protein interactions using amino acids substitution matrix and rotation forest ensemble classifiers. Neurocomputing 228, 277–282 (2017)

    Article  Google Scholar 

  33. Li, J.Q., Rong, Z.H., Chen, X., Yan, G.Y., You, Z.H.: MCMDA: matrix completion for MiRNA-disease association prediction. Oncotarget 8(13), 21187 (2017)

    Google Scholar 

  34. Mchugh, C.A., Russell, P., Guttman, M.: Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol. 15(1), 203 (2014)

    Article  Google Scholar 

  35. Yi, H.-C., You, Z.-H., Huang, D.-S., Li, X., Jiang, T.-H., Li, L.-P.: A deep learning framework for robust and accurate prediction of ncRNA-protein interactions using evolutionary information. Mol. Ther. Nucleic Acids 11, 337–344 (2018)

    Article  Google Scholar 

  36. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2013, Vancouver, pp. 8609–8613 (2013)

    Google Scholar 

  38. You, Z.H., Li, J., Gao, X., He, Z., Zhu, L., Lei, Y.K., Ji, Z.: Detecting protein-protein interactions with a novel matrix-based protein sequence representation and support vector machines. Biomed. Res. Int. 2015(2), 1–9 (2015)

    Google Scholar 

  39. You, Z.H., Chan, K.C.C., Hu, P.: Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest. PLoS ONE 10(5), e0125811 (2015)

    Article  Google Scholar 

  40. You, Z.H., Li, S., Gao, X., Luo, X., Ji, Z.: Large-scale protein-protein interactions detection by integrating big biosensing data with computational model. Biomed. Res. Int. (2) (2014). https://doi.org/10.1155/2014/598129

  41. Pedregosa, F., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(10), 2825–2830 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Yuan, H., You, Z.H., Xing, C., Chan, K., Xin, L.: Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding. BMC Bioinform. 17(1), 184 (2016)

    Article  Google Scholar 

  43. An, J.Y., You, Z.H., Meng, F.R., Xu, S.J., Wang, Y.: RVMAB: using the relevance vector machine model combined with average blocks to predict the interactions of proteins from protein sequences. Int. J. Mol. Sci. 17(5), 757 (2016)

    Article  Google Scholar 

  44. An, J.Y., Meng, F.R., You, Z.H., Fang, Y.H., Zhao, Y.J., Ming, Z.: Using the relevance vector machine model combined with local phase quantization to predict protein-protein interactions from protein sequences. Biomed. Res. Int. 2016, 1–9 (2016)

    Article  Google Scholar 

  45. Wong, L., You, Z.H., Ming, Z., Li, J., Chen, X., Huang, Y.A.: Detection of interactions between proteins through rotation forest and local phase quantization descriptors. Int. J. Mol. Sci. 17(1), 21 (2015)

    Article  Google Scholar 

  46. Wang, L., You, Z.H., Xia, S.X., Chen, X., Yan, X., Zhou, Y., Liu, F.: An improved efficient rotation forest algorithm to predict the interactions among proteins. Soft. Comput. 17, 1–9 (2017)

    Google Scholar 

  47. Wang, L., You, Z.H., Chen, X., Yan, X., Liu, G., Zhang, W.: RFDT: a rotation forest-based predictor for predicting drug-target interactions using drug structure and protein sequence information. Curr. Protein Pept. Sci. 5(19), 445–454 (2016)

    Google Scholar 

  48. Chen, X., Huang, Y.A., Wang, X.S., You, Z.H., Chan, K.C.: FMLNCSIM: fuzzy measure-based lncRNA functional similarity calculation model. Oncotarget 7(29), 45948 (2016)

    Google Scholar 

  49. Luo, X., You, Z., Zhou, M., Li, S., Leung, H., Xia, Y., Zhu, Q.: A highly efficient approach to protein interactome mapping based on collaborative filtering framework. Sci. Rep. 5(7702), 7702 (2015)

    Article  Google Scholar 

  50. Lei, Y.K., You, Z.H., Dong, T., Jiang, Y.X., Yang, J.A.: Increasing reliability of protein interactome by fast manifold embedding. Pattern Recognit. Lett. 34(4), 372–379 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Hong You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhan, ZH., You, ZH., Zhou, Y., Li, LP., Li, ZW. (2018). Efficient Framework for Predicting ncRNA-Protein Interactions Based on Sequence Information by Deep Learning. In: Huang, DS., Jo, KH., Zhang, XL. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10955. Springer, Cham. https://doi.org/10.1007/978-3-319-95933-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95933-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95932-0

  • Online ISBN: 978-3-319-95933-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics