Abstract
Mosquito Host-seeking Algorithm (MHSA) is a novel bionic algorithm. It simulates the behavior of mosquito seeking host. MHSA can find near-optimum solutions for the traveling salesman problem (TSP), however there are two drawbacks. First, it may be trapped into local optimum. Second, the solution exists several circles sometimes. In this paper, we adopt the Random Walk and the Game of Life strategies to improve MHSA, and propose a Random Walk and Game of Life Host-seeking Algorithm (RGHSA). RGHSA model is proposed to solve these two drawbacks. We use set theory and probability theory to prove the validity of the model. TSPlib is a benchmark for TSP. In the simulation, we choose server datasets from TSPlib, and compare the simulation result of RGHSA with original MHSA, Simulated Annealing Algorithm (SA) and Ant Colony Optimization Algorithm (ACO). The result shows that RGHSA have a good performance in TSP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hamerly, G., Elkan, C.: Alternatives to the k-means algorithm that find better clusterings. In: Proceedings of the Eleventh International Conference on Information and Knowledge Management, pp. 600–607. ACM (2002)
Matas, J., Kittler, J.: Spatial and feature space clustering: Applications in image analysis. In: Hlaváč, V., Šára, R. (eds.) CAIP 1995. LNCS, vol. 970, pp. 162–173. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60268-2_293
Natali, A., Toschi, E., Baldeweg, S., et al.: Clustering of insulin resistance with vascular dysfunction and low-grade inflammation in type 2 diabetes. Diabetes 55(4), 1133–1140 (2006)
Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6(3–4), 281–297 (1999)
Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques In: KDD Workshop on Text Mining, vol. 400(1), pp. 525–526 (2000)
Hu, T., Liu, C., Tang, Y., et al.: High-dimensional clustering: a clique-based hypergraph partitioning framework. Knowl. Inf. Syst. 39(1), 61–88 (2014)
Bouveyron, C., Brunet-Saumard, C.: Model-based clustering of high-dimensional data: a review. Comput. Stat. Data Anal. 71, 52–78 (2014)
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)
Zhu, X., Huang, Z., Yang, Y., et al.: Self-taught dimensionality reduction on the high-dimensional small-sized data. Pattern Recogn. 46(1), 215–229 (2013)
Song, Q., Ni, J., Wang, G.: A fast clustering-based feature subset selection algorithm for high-dimensional data. IEEE Trans. Knowl. Data Eng. 25(1), 1–14 (2013)
Soltanolkotabi, M., Elhamifar, E., Candes, E.J.: Robust subspace clustering. Ann. Stat. 42(2), 669–699 (2014)
Bouveyron, C.: Model-based clustering of high-dimensional data in Astrophysics. EAS Publ. Ser. 77, 91–119 (2016)
Han, E.H., Karypis, G., Kumar, V., et al.: Hypergraph based clustering in high-dimensional data sets: a summary of results. IEEE Data Eng. Bull. 21(1), 15–22 (1998)
Sun, L., Ji, S., Ye, J.: Hypergraph spectral learning for multi-label classification. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 668–676. ACM (2008)
Huang, Y., Liu, Q., Zhang, S., et al.: Image retrieval via probabilistic hypergraph ranking. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3376–3383. IEEE (2010)
Wang, M., Liu, X., Wu, X.: Visual classification by ℓ1-hypergraph modeling. IEEE Trans. Knowl. Data Eng. 27(9), 2564–2574 (2015)
Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: Papers on Twenty-Five Years of Electronic Design Automation, pp. 241–247. ACM (1988)
Huang, D.J.H., Kahng, A.B.: When clusters meet partitions: new density-based methods for circuit decomposition. In: Proceedings of the 1995 European Conference on Design and Test. IEEE Computer Society (1995)
Karypis, G., Aggarwal, R., Kumar, V., et al.: Multilevel hypergraph partitioning: applications in VLSI domain. IEEE Trans. Very Large Scale Integr. VLSI Syst. 7(1), 69–79 (1999)
Cai, W., Young, E.F.Y.: A fast hypergraph bipartitioning algorithm. In: 2014 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 607–612. IEEE (2014)
Lotfifar, F., Johnson, M.: A Serial Multilevel Hypergraph Partitioning Algorithm. arXiv preprint arXiv:1601.01336 (2016)
Henne, V., Meyerhenke, H., Sanders, P., et al.: n-Level Hypergraph Partitioning. arXiv preprint arXiv:1505.00693 (2015)
Liu, H., Latecki, L.J., Yan, S.: Dense subgraph partition of positive hypergraphs. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 541–554 (2015)
Jagannathan, J., Sherajdheen, A., Deepak, R.M.V., et al.: License plate character segmentation using horizontal and vertical projection with dynamic thresholding. In: 2013 International Conference on Emerging Trends in Computing, Communication and Nanotechnology (ICE-CCN), pp. 700–705. IEEE (2013)
Tuba, E., Bacanin, N.: An algorithm for handwritten digit recognition using projection histograms and SVM classifier. In: 2015 23rd Telecommunications Forum Telfor (TELFOR), pp. 464–467. IEEE (2015)
Hinton, G., Roweis, S.: Stochastic neighbor embedding. In: NIPS. 15, pp. 833–840 (2002)
Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in sparse graphs in near-optimal time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 403–414. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17517-6_36
The Semeion dataset. https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+digit
Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78(383), 553–569 (1983)
The MNIST dataset. http://yann.lecun.com/exdb/mnist/index.html
The USPS dataset. http://www.cs.nyu.edu/~roweis/data/html
The Binaryalphadigs dataset. http://www.cs.toronto.edu/~roweis/data/binaryalphadigs.mat
Van der Maaten, L.: A new benchmark dataset for handwritten character recognition, pp. 2–5. Tilburg Universit (2009)
Kaufman, L., Rousseeuw, P.: Clustering by Means of Medoids. North-Holland, Amsterdam (1987)
Sun, X., Tian, S., Lu, Y.: High dimensional data clustering by partitioning the hypergraphs using dense subgraph partition. In: Ninth International Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR2015). International Society for Optics and Photonics (2015)
Acknowledgement
This work was supported by the National Natural Science Foundation of China (Grant No. 61472293). Research Project of Hubei Provincial Department of Education (Grant No. 2016238).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Zhu, Y., Feng, X., Yu, H. (2018). Mosquito Host-Seeking Algorithm Based on Random Walk and Game of Life. In: Huang, DS., Jo, KH., Zhang, XL. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10955. Springer, Cham. https://doi.org/10.1007/978-3-319-95933-7_78
Download citation
DOI: https://doi.org/10.1007/978-3-319-95933-7_78
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95932-0
Online ISBN: 978-3-319-95933-7
eBook Packages: Computer ScienceComputer Science (R0)