Skip to main content

A Robust Locally Linear Embedding Method Based on Feature Space Projection

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10956))

Included in the following conference series:

  • 2427 Accesses

Abstract

At present, most of the manifold learning methods use the K-Nearest Neighbor (KNN) criterion to determine the adjacency relationship between data points, which is not complete in the description of the sample distribution in the original data space. When many noise data are included in the observation space, the results of constructing adjacency graph by KNN may contain too many areas outside the unsupported domain, which will produce the wrong geometric projection distance. Isometric Feature Mapping (ISOMAP) and Locally Linear Embedding (LLE) algorithm are very sensitive to noise data because of above reason. In view of the above problem, a robust locally linear embedding method based on feature space projection is proposed. Based on LLE algorithm, the feature space projection is introduced to smooth the original samples and to improve the robustness of the noise data set in the process of reducing the dimension using LLE algorithm. The experimental results prove that this method is effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan, H., Lu, J., Zhou, X.: Multi-feature multi-manifold learning for single-sample face recognition. Neurocomputing 143(16), 134–143 (2014)

    Article  Google Scholar 

  2. Dornaika, F., Raduncanu, B.: Out-of-sample embedding for manifold learning applied to face recognition. In: Computer Vision and Pattern Recognition Workshops, pp. 862–868 (2014)

    Google Scholar 

  3. Berthet, Q., Rigollet, P.: Computational lower bounds for sparse PCA. In: Computer Science (2014)

    Google Scholar 

  4. Fernandes, S.L., Bala, G.J.: Recognizing facial images using ICA, LPP, MACE Gabor filters, score level fusion techniques. In: International Conference on Electronics and Communication Systems, pp. 1–5 (2014)

    Google Scholar 

  5. Zhang, D., Luo, T., Wang, D.: Learning from LDA using deep neural networks. In: Lin, C.-Y., Xue, N., Zhao, D., Huang, X., Feng, Y. (eds.) ICCPOL/NLPCC-2016. LNCS (LNAI), vol. 10102, pp. 657–664. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50496-4_59

    Chapter  Google Scholar 

  6. Guo, S., Li, P.Y., Wang, H.: LFA-based algorithm for IP network fast recovery. In: Computer Engineering & Design (2017)

    Google Scholar 

  7. Joseph, A.A., Tokumoto, T., Ozawa, S.: Online feature extraction based on accelerated kernel principal component analysis for data stream. Evol. Syst. 7(1), 15–27 (2016)

    Article  Google Scholar 

  8. Li, J., Li, X., Tao, D.: KPCA for Semantic Object Extraction in Images. Elsevier Science Inc., New York (2008)

    MATH  Google Scholar 

  9. Yin, K.Z., Gong, W.G., Li, W.H.: Research on KICA-based face recognition. In: Computer Applications (2005)

    Google Scholar 

  10. Sudholt, S., Fink, G.A.: A modified Isomap approach to manifold learning in word spotting. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 529–539. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24947-6_44

    Chapter  Google Scholar 

  11. Yang, B., Xiang, M., Zhang, Y.: Multi-manifold discriminant Isomap for visualization and classification. Pattern Recognit. 55, 215–230 (2016)

    Article  Google Scholar 

  12. Liu, F., Zhang, W., Gu, S.: Local linear Laplacian eigenmaps: a direct extension of LLE. Pattern Recognit. Lett. 75, 30–35 (2016)

    Article  Google Scholar 

  13. Liu, Y., Yu, Z., Zeng, M.: LLE for submersible plunger pump fault diagnosis via joint wavelet and SVD approach. Neurocomputing 185, 202–211 (2016)

    Article  Google Scholar 

  14. Wang, B., Yan, D., Chu, Y.: Face recognition based on sparse array of LPP and ELM. In: Microcomputer & Its Applications (2016)

    Google Scholar 

  15. Liu, Y.Q., Liang, J.G., Wang, Y.W.: Gain-improved double-slot LTSA with conformal corrugated edges. Int. J. RF Microw. Comput. Aided Eng. 1, e21133 (2017)

    Article  Google Scholar 

  16. Cui, P., Zhang, X.: Generalized improvement of LTSA algorithm based on manifold learning. In: Computer Engineering & Applications (2017)

    Google Scholar 

  17. Xie, Y., Chenna, P., He, J.: Visualization of big high dimensional data in a three dimensional space. In: International Conference on Big Data Computing Applications and Technologies, pp. 61–66 (2017)

    Google Scholar 

  18. Lo, J.T., Gui, Y., Peng, Y.: Solving the local-minimum problem in training deep learning machines. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10634, pp. 166–174. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70087-8_18

    Chapter  Google Scholar 

  19. Bastani, O., Ioannou, Y., Lampropoulos, L.: Measuring neural net robustness with constraints (2016)

    Google Scholar 

  20. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks, security and privacy (2017)

    Google Scholar 

  21. Chang, H., Yeung, D.Y.: Robust locally linear embedding. Pattern Recognit. 39(6), 1053–1065 (2006)

    Article  Google Scholar 

  22. Alexa, M., Adamson, A.: On normals and projection operators for surfaces defined by point sets. In: Eurographics Conference on Point-Based Graphics, pp. 149–155 (2004)

    Google Scholar 

  23. Zhang, S., Li, X., Zong, M.: Efficient kNN classification with different numbers of nearest neighbors. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–12 (2017)

    Google Scholar 

  24. Adeniyi, D.A., Wei, Z., Yong, Y.: Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method. Appl. Comput. Inform. 12(1), 90–108 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the grants of Natural Science Foundation of China (61273303&61572381).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zou, FM., Li, B., Fan, ZT. (2018). A Robust Locally Linear Embedding Method Based on Feature Space Projection. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95957-3_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95956-6

  • Online ISBN: 978-3-319-95957-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics