Skip to main content

Neuromechanical Model of Rat Hind Limb Walking with Two Layer CPGs and Muscle Synergies

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10928))

Included in the following conference series:

  • 2896 Accesses

Abstract

We present a synthetic nervous system modeling mammalian locomotion using separate central pattern generator and pattern formation layers. The central pattern generator defines the rhythm of locomotion and the timing of extensor and flexor phase. We also investigated the capability of the pattern formation network to operate using muscle synergies instead of single muscle pairs. The result is that this model is capable of adjusting rhythm and muscle forces independently, and stepping is successfully produced using two synergies, one with the hip, and the other with the knee and ankle combined. This work demonstrates that pattern formation networks can activate multiple muscles in a coordinated way to produce steady walking. It encourages the use of more complex synergies activating more muscles in the legs for 3D limb motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buschmann, T., Ewald, A., von Twickel, A., Bueschges, A.: Controlling legs for locomotion—insights from robotics and neurobiology. Bioinspiration & Biomim. 10(4), 041001 (2015)

    Article  Google Scholar 

  2. Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci. Methods 187(2), 280–288 (2010)

    Article  Google Scholar 

  3. d’Avella, A., Saltiel, P., Bizzi, E.: Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 6(3), 300 (2003)

    Article  Google Scholar 

  4. Grillner, S., Zangger, P.: On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 34(2), 241–261 (1979)

    Article  Google Scholar 

  5. Hunt, A.J., Szczecinski, N.S., Andrada, E., Fischer, M., Quinn, R.D.: Using animal data and neural dynamics to reverse engineer a neuromechanical rat model. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) LIVINGMACHINES 2015. LNCS (LNAI), vol. 9222, pp. 211–222. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22979-9_21

    Chapter  Google Scholar 

  6. Hunt, A., Szczecinski, N., Quinn, R.: Development and training of a neural controller for hind leg walking in a dog robot. Front. Neurorobotics 11, 18 (2017)

    Article  Google Scholar 

  7. Ivashko, D.G., Prilutsky, B.I., Markin, S.N., Chapin, J.K., Rybak, I.A.: Modeling the spinal cord neural circuitry controlling cat hindlimb movement during locomotion. Neurocomputing 52, 621–629 (2003)

    Article  Google Scholar 

  8. Lafreniere-Roula, M., McCrea, D.A.: Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. J. Neurophysiol. 94(2), 1120–1132 (2005)

    Article  Google Scholar 

  9. McCrea, D.A., Rybak, I.A.: Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 57(1), 134–146 (2008)

    Article  Google Scholar 

  10. Pearson, K., Ekeberg, Ö., Büschges, A.: Assessing sensory function in locomotor systems using neuro-mechanical simulations. Trends Neurosci. 29(11), 625–631 (2006)

    Article  Google Scholar 

  11. Robertson, G.A., Stein, P.S.: Synaptic control of hindlimb motoneurones during three forms of the fictive scratch reflex in the turtle. J. Physiol. 404(1), 101–128 (1988)

    Article  Google Scholar 

  12. Rybak, I.A., Shevtsova, N.A., Lafreniere-Roula, M., McCrea, D.A.: Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J. Physiol. 577(2), 617–639 (2006)

    Article  Google Scholar 

  13. Rybak, I.A., Stecina, K., Shevtsova, N.A., McCrea, D.A.: Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation. J. Physiol. 577(2), 641–658 (2006)

    Article  Google Scholar 

  14. Shevtsova, N.A., Rybak, I.A.: Organization of flexor–extensor interactions in the mammalian spinal cord: insights from computational modelling. J. Physiol. 594(21), 6117–6131 (2016)

    Article  Google Scholar 

  15. Ting, L.H., McKay, J.L.: Neuromechanics of muscle synergies for posture and movement. Curr. Opin. Neurobiol. 17(6), 622–628 (2007)

    Article  Google Scholar 

  16. Tresch, M.C., Jarc, A.: The case for and against muscle synergies. Curr. Opin. Neurobiol. 19(6), 601–607 (2009)

    Article  Google Scholar 

  17. Zhang, J., Lanuza, G.M., Britz, O., Wang, Z., Siembab, V.C., Zhang, Y., Velasquez, T., Alvarez, F.J., Goulding, M.: V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Neuron 82(1), 138–150 (2014)

    Article  Google Scholar 

  18. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design process and tools for dynamic neuromechanical models and robot controllers. Biol. Cybern. 111(1), 105–127 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US-German CRCNS program including NSF IIS160811.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiyu Deng .

Editor information

Editors and Affiliations

Appendix

Appendix

See Fig. 9.

Fig. 9.
figure 9

Joint motion for non-resetting test. The stimulus was applied from 2s to 2.5s at left hip pattern formation extensor neuron.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, K. et al. (2018). Neuromechanical Model of Rat Hind Limb Walking with Two Layer CPGs and Muscle Synergies. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95972-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95971-9

  • Online ISBN: 978-3-319-95972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics