Abstract
We present a synthetic nervous system modeling mammalian locomotion using separate central pattern generator and pattern formation layers. The central pattern generator defines the rhythm of locomotion and the timing of extensor and flexor phase. We also investigated the capability of the pattern formation network to operate using muscle synergies instead of single muscle pairs. The result is that this model is capable of adjusting rhythm and muscle forces independently, and stepping is successfully produced using two synergies, one with the hip, and the other with the knee and ankle combined. This work demonstrates that pattern formation networks can activate multiple muscles in a coordinated way to produce steady walking. It encourages the use of more complex synergies activating more muscles in the legs for 3D limb motion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Buschmann, T., Ewald, A., von Twickel, A., Bueschges, A.: Controlling legs for locomotion—insights from robotics and neurobiology. Bioinspiration & Biomim. 10(4), 041001 (2015)
Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci. Methods 187(2), 280–288 (2010)
d’Avella, A., Saltiel, P., Bizzi, E.: Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 6(3), 300 (2003)
Grillner, S., Zangger, P.: On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 34(2), 241–261 (1979)
Hunt, A.J., Szczecinski, N.S., Andrada, E., Fischer, M., Quinn, R.D.: Using animal data and neural dynamics to reverse engineer a neuromechanical rat model. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) LIVINGMACHINES 2015. LNCS (LNAI), vol. 9222, pp. 211–222. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22979-9_21
Hunt, A., Szczecinski, N., Quinn, R.: Development and training of a neural controller for hind leg walking in a dog robot. Front. Neurorobotics 11, 18 (2017)
Ivashko, D.G., Prilutsky, B.I., Markin, S.N., Chapin, J.K., Rybak, I.A.: Modeling the spinal cord neural circuitry controlling cat hindlimb movement during locomotion. Neurocomputing 52, 621–629 (2003)
Lafreniere-Roula, M., McCrea, D.A.: Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. J. Neurophysiol. 94(2), 1120–1132 (2005)
McCrea, D.A., Rybak, I.A.: Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 57(1), 134–146 (2008)
Pearson, K., Ekeberg, Ö., Büschges, A.: Assessing sensory function in locomotor systems using neuro-mechanical simulations. Trends Neurosci. 29(11), 625–631 (2006)
Robertson, G.A., Stein, P.S.: Synaptic control of hindlimb motoneurones during three forms of the fictive scratch reflex in the turtle. J. Physiol. 404(1), 101–128 (1988)
Rybak, I.A., Shevtsova, N.A., Lafreniere-Roula, M., McCrea, D.A.: Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J. Physiol. 577(2), 617–639 (2006)
Rybak, I.A., Stecina, K., Shevtsova, N.A., McCrea, D.A.: Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation. J. Physiol. 577(2), 641–658 (2006)
Shevtsova, N.A., Rybak, I.A.: Organization of flexor–extensor interactions in the mammalian spinal cord: insights from computational modelling. J. Physiol. 594(21), 6117–6131 (2016)
Ting, L.H., McKay, J.L.: Neuromechanics of muscle synergies for posture and movement. Curr. Opin. Neurobiol. 17(6), 622–628 (2007)
Tresch, M.C., Jarc, A.: The case for and against muscle synergies. Curr. Opin. Neurobiol. 19(6), 601–607 (2009)
Zhang, J., Lanuza, G.M., Britz, O., Wang, Z., Siembab, V.C., Zhang, Y., Velasquez, T., Alvarez, F.J., Goulding, M.: V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Neuron 82(1), 138–150 (2014)
Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design process and tools for dynamic neuromechanical models and robot controllers. Biol. Cybern. 111(1), 105–127 (2017)
Acknowledgements
This work was supported by grants from the US-German CRCNS program including NSF IIS160811.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
See Fig. 9.
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Deng, K. et al. (2018). Neuromechanical Model of Rat Hind Limb Walking with Two Layer CPGs and Muscle Synergies. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-95972-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95971-9
Online ISBN: 978-3-319-95972-6
eBook Packages: Computer ScienceComputer Science (R0)