Skip to main content

Distributed Sensing for Soft Worm Robot Reduces Slip for Locomotion in Confined Environments

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10928))

Included in the following conference series:

Abstract

Earthworms are soft-bodied animals with mechanosensory organs that allow them to bend and contort, and adapt to external perturbations. To mimic these attributes of the earthworm on a robotic platform, we designed and constructed a new robot: Distributed-Sensing Compliant Worm (DiSCo-Worm) Robot. DiSCo-Worm is equipped with 36 Force Sensing Resistors (6 per segment) that allow the robot to detect external constraints and 12 flexible stretch sensors (2 per segment) that allow for tracking the shape of the robot. We show the ability of the robot to navigate in constrained spaces using an open-loop, time-based controller and a closed-loop sensory feedback controller. The results indicate that the robot can sense external constraints and its internal state (longitudinal extension of each segment) and use this information to change its state of either expanding in diameter, contracting in diameter or anchoring. Sensory feedback reduces high forces that otherwise result in damage to the robot by stopping actuation shortly after contact. In this way, each segment applies forces 33% to 80% (based on the location of the sensor) of its weight, when locomoting between two parallel surfaces. Using a closed-loop controller, the robot is able to adapt to its environment and almost eliminates forward slip, which accounts for 58% of the total motion in case of open-loop control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rateni, G., Cianchetti, M., Ciuti, G., Menciassi, A., Laschi, C.: Design and development of a soft robotic gripper for manipulation in minimally invasive surgery: a proof of concept. Meccanica 50(11), 2855–2863 (2015)

    Article  Google Scholar 

  2. Altendorfer, R., Moore, N., Komsuoglu, H., Buehler, M., Brown, H.B., McMordie, D., Saranli, U., Full, R., Koditschek, D.E.: Rhex: a biologically inspired hexapod runner. Auton. Robots 11(3), 207–213 (2001)

    Article  Google Scholar 

  3. Seok, S., Onal, C.D., Cho, K.J., Wood, R.J., Rus, D., Kim, S.: Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatron. 18(5), 1485–1497 (2013)

    Article  Google Scholar 

  4. Kandhari, A., et al.: Sensing contact constraints in a worm-like robot by detecting load anomalies. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T. (eds.) Living Machines 2016. LNCS (LNAI), vol. 9793, pp. 97–106. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42417-0_10

    Chapter  Google Scholar 

  5. Mangan, E.V., Kingsley, D.A., Quinn, R.D., Chiel, H.J.: Development of a peristaltic endoscope. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 347–52 (2002)

    Google Scholar 

  6. Horchler, A.D., Kandhari, A., Daltorio, K.A., Moses, K.C., Ryan, J.C., Stultz, K.A., Kanu, E.N., Andersen, K.B., Kershaw, J., Bachmann, R.J., Chiel, H.J., Quinn, R.D.: Peristaltic locomotion of a modular mesh-based worm robot: precision, compliance, and friction. Soft Robot. 2(4), 135–145 (2015)

    Article  Google Scholar 

  7. Vaidyanathan, R., Chiel, H.J., Quinn, R.D.: A hydrostatic robot for marine applications. Robot. Auton. Syst. 30, 103–113 (2000)

    Article  Google Scholar 

  8. Boxerbaum, A.S., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D.: Worms, waves and robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3537–3538 (2012)

    Google Scholar 

  9. Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D.: Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5(3), 99–117 (2008)

    Article  Google Scholar 

  10. Dario, P., Ciarletta, P., Menciassi, A., Kim, B.: Modeling and experimental validation of the locomotion of endoscopic robots in the colon. Int. J. Robot. Res. 23(4–5), 549–556 (2004)

    Article  Google Scholar 

  11. Huang, Y., Kandhari, A., Chiel, H.J., Quinn, R.D., Daltorio, K.A.: Mathematical modeling to improve control of mesh body for peristaltic locomotion. In: Conference on Biomimetic and Biohybrid Systems, pp. 193–203 (2017)

    Chapter  Google Scholar 

  12. Chiel, H.J., Crago, P., Mansour, J.M., Hathi, K.: Biomechanics of a muscular hydrostat: a model of lapping by a reptilian tongue. Biol. Cybern. 67(5), 403–415 (1992)

    Article  Google Scholar 

  13. Gray, J., Lissmann, H.W.: Studies in animal locomotion VII. Locomotory reflexes in the earthworm. J. Exp. Biol. 15, 506–517 (1938)

    Google Scholar 

  14. Kanu, E.N., Daltorio, K.A., Quinn, R.D., Chiel, H.J.: Correlating kinetics and kinematics of earthworm peristaltic locomotion. Proc. Int. Conf. Biomim. Biohybrid Syst. 9222, 92–96 (2015)

    Article  Google Scholar 

  15. Mizutani, K., Shimoi, T., Ogawa, H., Kitamura, Y., Oka, K.: Modulation of motor patterns by sensory feedback during earthworm locomotion. Neurosci. Res. 48(4), 457–462 (2004)

    Article  Google Scholar 

  16. Mill, P.J.: Recent developments in earthworm neurobiology. Comp. Biochem. Physiol. 12, 107–115 (1982)

    Google Scholar 

  17. Ikeuchi, M., Nakamura, T., Matsubara, D.: Development of an in-pipe inspection robot for narrow pipes and elbows using pneumatic artificial muscles. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 926–931 (2012)

    Google Scholar 

  18. Trimmer, B.A., Takesian, A.E., Sweet, B.M., Rogers, C.B., Hake, D.C., Rogers, D.J.: Caterpillar locomotion: a new model for soft-bodied climbing and burrowing robots. In: International Symposium on Technology and the Mine Problem, vol. 1, pp. 1–10 (2006)

    Google Scholar 

  19. Bertetto, A.M., Ruggiu, M.: In-pipe inch-worm pneumatic flexible robot. In: Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol. 2, pp. 1226–1231 (2001)

    Google Scholar 

  20. Tanaka, T., Harigaya, K., Nakamura, T.: Development of a peristaltic crawling robot for long-distance inspection of sewer pipes. In: Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1552–1557 (2014)

    Google Scholar 

  21. Daltorio, K.A., Boxerbaum, A.S., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D.: Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots. Bioinspir. Biomim. 8(3), 035003 (2013)

    Article  Google Scholar 

  22. Kandhari, A., Huang, Y., Daltorio, K.A., Chiel, H.J., Quinn, R.D.: Body stiffness in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion. Bioinspir. Biomim. 13(2), 026003 (2018)

    Article  Google Scholar 

  23. Umedachi, T., Kano, T., Ishiguro, A., Trimmer, B.A.: Gait control in a soft robot by sensing interactions with the environment using self-deformation. R. Soc. Open Sci. 3(12), 160766 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. NSF #1743475.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhil Kandhari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kandhari, A. et al. (2018). Distributed Sensing for Soft Worm Robot Reduces Slip for Locomotion in Confined Environments. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95972-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95971-9

  • Online ISBN: 978-3-319-95972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics