Abstract
Earthworms are soft-bodied animals with mechanosensory organs that allow them to bend and contort, and adapt to external perturbations. To mimic these attributes of the earthworm on a robotic platform, we designed and constructed a new robot: Distributed-Sensing Compliant Worm (DiSCo-Worm) Robot. DiSCo-Worm is equipped with 36 Force Sensing Resistors (6 per segment) that allow the robot to detect external constraints and 12 flexible stretch sensors (2 per segment) that allow for tracking the shape of the robot. We show the ability of the robot to navigate in constrained spaces using an open-loop, time-based controller and a closed-loop sensory feedback controller. The results indicate that the robot can sense external constraints and its internal state (longitudinal extension of each segment) and use this information to change its state of either expanding in diameter, contracting in diameter or anchoring. Sensory feedback reduces high forces that otherwise result in damage to the robot by stopping actuation shortly after contact. In this way, each segment applies forces 33% to 80% (based on the location of the sensor) of its weight, when locomoting between two parallel surfaces. Using a closed-loop controller, the robot is able to adapt to its environment and almost eliminates forward slip, which accounts for 58% of the total motion in case of open-loop control.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rateni, G., Cianchetti, M., Ciuti, G., Menciassi, A., Laschi, C.: Design and development of a soft robotic gripper for manipulation in minimally invasive surgery: a proof of concept. Meccanica 50(11), 2855–2863 (2015)
Altendorfer, R., Moore, N., Komsuoglu, H., Buehler, M., Brown, H.B., McMordie, D., Saranli, U., Full, R., Koditschek, D.E.: Rhex: a biologically inspired hexapod runner. Auton. Robots 11(3), 207–213 (2001)
Seok, S., Onal, C.D., Cho, K.J., Wood, R.J., Rus, D., Kim, S.: Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatron. 18(5), 1485–1497 (2013)
Kandhari, A., et al.: Sensing contact constraints in a worm-like robot by detecting load anomalies. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T. (eds.) Living Machines 2016. LNCS (LNAI), vol. 9793, pp. 97–106. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42417-0_10
Mangan, E.V., Kingsley, D.A., Quinn, R.D., Chiel, H.J.: Development of a peristaltic endoscope. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 347–52 (2002)
Horchler, A.D., Kandhari, A., Daltorio, K.A., Moses, K.C., Ryan, J.C., Stultz, K.A., Kanu, E.N., Andersen, K.B., Kershaw, J., Bachmann, R.J., Chiel, H.J., Quinn, R.D.: Peristaltic locomotion of a modular mesh-based worm robot: precision, compliance, and friction. Soft Robot. 2(4), 135–145 (2015)
Vaidyanathan, R., Chiel, H.J., Quinn, R.D.: A hydrostatic robot for marine applications. Robot. Auton. Syst. 30, 103–113 (2000)
Boxerbaum, A.S., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D.: Worms, waves and robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3537–3538 (2012)
Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D.: Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5(3), 99–117 (2008)
Dario, P., Ciarletta, P., Menciassi, A., Kim, B.: Modeling and experimental validation of the locomotion of endoscopic robots in the colon. Int. J. Robot. Res. 23(4–5), 549–556 (2004)
Huang, Y., Kandhari, A., Chiel, H.J., Quinn, R.D., Daltorio, K.A.: Mathematical modeling to improve control of mesh body for peristaltic locomotion. In: Conference on Biomimetic and Biohybrid Systems, pp. 193–203 (2017)
Chiel, H.J., Crago, P., Mansour, J.M., Hathi, K.: Biomechanics of a muscular hydrostat: a model of lapping by a reptilian tongue. Biol. Cybern. 67(5), 403–415 (1992)
Gray, J., Lissmann, H.W.: Studies in animal locomotion VII. Locomotory reflexes in the earthworm. J. Exp. Biol. 15, 506–517 (1938)
Kanu, E.N., Daltorio, K.A., Quinn, R.D., Chiel, H.J.: Correlating kinetics and kinematics of earthworm peristaltic locomotion. Proc. Int. Conf. Biomim. Biohybrid Syst. 9222, 92–96 (2015)
Mizutani, K., Shimoi, T., Ogawa, H., Kitamura, Y., Oka, K.: Modulation of motor patterns by sensory feedback during earthworm locomotion. Neurosci. Res. 48(4), 457–462 (2004)
Mill, P.J.: Recent developments in earthworm neurobiology. Comp. Biochem. Physiol. 12, 107–115 (1982)
Ikeuchi, M., Nakamura, T., Matsubara, D.: Development of an in-pipe inspection robot for narrow pipes and elbows using pneumatic artificial muscles. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 926–931 (2012)
Trimmer, B.A., Takesian, A.E., Sweet, B.M., Rogers, C.B., Hake, D.C., Rogers, D.J.: Caterpillar locomotion: a new model for soft-bodied climbing and burrowing robots. In: International Symposium on Technology and the Mine Problem, vol. 1, pp. 1–10 (2006)
Bertetto, A.M., Ruggiu, M.: In-pipe inch-worm pneumatic flexible robot. In: Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol. 2, pp. 1226–1231 (2001)
Tanaka, T., Harigaya, K., Nakamura, T.: Development of a peristaltic crawling robot for long-distance inspection of sewer pipes. In: Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1552–1557 (2014)
Daltorio, K.A., Boxerbaum, A.S., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D.: Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots. Bioinspir. Biomim. 8(3), 035003 (2013)
Kandhari, A., Huang, Y., Daltorio, K.A., Chiel, H.J., Quinn, R.D.: Body stiffness in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion. Bioinspir. Biomim. 13(2), 026003 (2018)
Umedachi, T., Kano, T., Ishiguro, A., Trimmer, B.A.: Gait control in a soft robot by sensing interactions with the environment using self-deformation. R. Soc. Open Sci. 3(12), 160766 (2016)
Acknowledgments
This material is based upon work supported by the National Science Foundation under Grant No. NSF #1743475.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Kandhari, A. et al. (2018). Distributed Sensing for Soft Worm Robot Reduces Slip for Locomotion in Confined Environments. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-95972-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95971-9
Online ISBN: 978-3-319-95972-6
eBook Packages: Computer ScienceComputer Science (R0)