Skip to main content

Reinforcement Learning for Computer Vision and Robot Navigation

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10935))

Abstract

Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn the state of a surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. Reinforcement learning is one of the modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, reinforcement learning has been used both for solving robotic computer vision problems such as object detection, visual tracking and action recognition as well as robot navigation. The paper describes shortly the reinforcement learning technology and its use for computer vision and robot navigation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(IoU(\hat{y}, y) = \frac{|\hat{y} \cap y|}{|\hat{y} \cup y|}\).

References

  1. Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: a survey. J. Intell. Robot. Syst. 53(3), 263–296 (2008)

    Article  Google Scholar 

  2. Kuleshov, A., Bernstein, A., Burnaev, E.: Mobile robot localization via machine learning. In: Perner, P. (ed.) MLDM 2017. LNCS (LNAI), vol. 10358, pp. 276–290. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62416-7_20

    Chapter  Google Scholar 

  3. Kuleshov, A., Bernstein, A., Burnaev, E., Yanovich, Yu.: Machine learning in appearance-based robot self-localization. In: 16th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE Conference Publications (2017)

    Google Scholar 

  4. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  5. Kaelbling, L.P., Littman, M.L., Moore, A.P.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Google Scholar 

  6. Burnaev, E., Panov, M.: Adaptive design of experiments based on Gaussian processes. In: Gammerman, A., Vovk, V., Papadopoulos, H. (eds.) SLDS 2015. LNCS (LNAI), vol. 9047, pp. 116–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17091-6_7

    Chapter  Google Scholar 

  7. Burnaev, E., Panin, I., Sudret, B.: Efficient design of experiments for sensitivity analysis based on polynomial chaos expansions. Ann. Math. Artif. Intell. 81, 187–207 (2017)

    Article  MathSciNet  Google Scholar 

  8. Puterman, M.L.: Markovian Decision Processes - Discrete Stochastic Dynamic Programming. Wiley, New York (1994)

    MATH  Google Scholar 

  9. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  10. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)

    MATH  Google Scholar 

  11. Jaakola, T., Jordan, M., Singh, S.: On the convergence of stochastic iterative dynamic programming algorithms. Neural Comput. 6(6), 1185–1201 (1994)

    Article  Google Scholar 

  12. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

    MATH  Google Scholar 

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  14. Burnaev, E.V., Erofeev, P.D.: The influence of parameter initialization on the training time and accuracy of a nonlinear regression model. J. Commun. Technol. Electron. 61(6), 646–660 (2016)

    Article  Google Scholar 

  15. Burnaev, E.V., Prikhod’ko, P.V.: On a method for constructing ensembles of regression models. Autom. Remote Control 74(10), 1630–1644 (2013)

    Article  MathSciNet  Google Scholar 

  16. Li, Y.: Deep reinforcement learning: an overview, pp. 1–70 (2017). [cs.LG]

    Google Scholar 

  17. Uijlings, J.R., Van De Sande, K.E., et al.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  18. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, p. I. IEEE (2001)

    Google Scholar 

  19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  20. Caicedo, J.C., Lazebnik, S.: Active object localization with deep reinforcement learning. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2488–2496. IEEE (2015)

    Google Scholar 

  21. Zhang, D., Maei, H., et al.: Deep reinforcement learning for visual object tracking in videos. Preprint arXiv (2017)

    Google Scholar 

  22. Luo, W., Sun, P., Mu, Y., Liu, W.: End-to-end active object tracking via reinforcement learning. Preprint (2017)

    Google Scholar 

  23. Mnih, V., Badia, A.P., et al.: Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1928–1937 (2016)

    Google Scholar 

  24. Qiu, W., Zhong, F., et al.: UnrealCV: virtual worlds for computer vision. In: ACM Multimedia Open Source Software Competition (2017)

    Google Scholar 

  25. Huang, J., Li, N., et al.: A Self-Adaptive Proposal Model for Temporal Action Detection based on Reinforcement Learning (2017)

    Google Scholar 

  26. Yeung, S., Russakovsky, O., et al.: End-to-end learning of action detection from frame glimpses in videos, vol. 10, no. 1109, pp. 2678–2687 (2016)

    Google Scholar 

  27. Giusti, A., Guzzi, J., et al.: A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robot. Autom. Lett. 1, 661–667 (2016)

    Article  Google Scholar 

  28. Maqueda, A.I., Loquercio, A., et al.: Event-based Vision meets Deep Learning on Steering Prediction for Self-driving Cars, April 2018. ArXiv e-prints

    Google Scholar 

  29. Anderson, P., Wu, Q., et al.: Vision-and-language navigation: Interpreting visually-grounded navigation instructions in real environments. CoRR abs/1711.07280 (2017)

    Google Scholar 

  30. Xie, L., Wang, S., et al.: Towards monocular vision based obstacle avoidance through deep reinforcement learning. CoRR abs/1706.09829 (2017)

    Google Scholar 

  31. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  32. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-learning. In: AAAI (2016)

    Google Scholar 

  33. Mirowski, P., Grimes, M.K., et al.: Learning to navigate in cities without a map. arXiv preprint arXiv:1804.00168 (2018)

  34. Zhu, Y., Mottaghi, R., et al.: Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3357–3364 (2017)

    Google Scholar 

  35. Wang, X., Xiong, W., et al.: Look Before You Leap: Bridging Model-Free and Model-Based Reinforcement Learning for Planned-Ahead Vision-and-Language Navigation. ArXiv e-prints, March 2018

    Google Scholar 

  36. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2 (2015)

    Google Scholar 

  37. Mirowski, P.W., Pascanu, R., et al.: Learning to navigate in complex environments. CoRR abs/1611.03673 (2016)

    Google Scholar 

  38. Kempka, M., Wydmuch, M., et al.: ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning. ArXiv e-prints, May 2016

    Google Scholar 

  39. Savva, M., Chang, A.X., et al.: Minos: Multimodal indoor simulator for navigation in complex environments. arXiv preprint arXiv:1712.03931 (2017)

  40. Andrychowicz, M., Wolski, F., et al.: Hindsight experience replay. In: Advances in Neural Information Processing Systems, pp. 5048–5058 (2017)

    Google Scholar 

  41. Dosovitskiy, A., Ros, G., et al.: Carla: An open urban driving simulator. arXiv preprint arXiv:1711.03938 (2017)

  42. Koenig, N.P., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2149–2154 (2004)

    Google Scholar 

  43. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles. In: Hutter, M., Siegwart, R. (eds.) Field and Service Robotics. SPAR, vol. 5, pp. 621–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67361-5_40

    Chapter  Google Scholar 

  44. Song, S., Yu, F., et al.: Semantic scene completion from a single depth image. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  45. Chang, A., Dai, A., et al.: Matterport3d: Learning from RGB-D data in indoor environments. arXiv preprint arXiv:1709.06158 (2017)

  46. Tobin, J., Fong, R., et al.: Domain randomization for transferring deep neural networks from simulation to the real world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30 (2017)

    Google Scholar 

  47. Sadeghi, F., Levine, S.: CAD2RL: Real single-image flight without a single real image. CoRR abs/1611.04201 (2017)

    Google Scholar 

  48. Yosinski, J., Clune, J., et al.: How transferable are features in deep neural networks? In: NIPS (2014)

    Google Scholar 

  49. You, Y., Pan, X., Wang, Z., Lu, C.: Virtual to real reinforcement learning for autonomous driving. CoRR abs/1704.03952 (2017)

    Google Scholar 

  50. Zhang, J., Tai, L., et al.: Vr goggles for robots: Real-to-sim domain adaptation for visual control. CoRR abs/1802.00265 (2018)

    Google Scholar 

  51. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  52. Graves, A., Wayne, G., et al.: Hybrid computing using a neural network with dynamic external memory. Nature 538(7626), 471–476 (2016)

    Article  Google Scholar 

  53. Sukhbaatar, S., Szlam, A., et al.: End-to-end memory networks. In: NIPS (2015)

    Google Scholar 

  54. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. CoRR abs/1410.5401 (2014)

    Google Scholar 

  55. Khan, A., Zhang, C., et al.: Memory augmented control networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  56. Parisotto, E., Salakhutdinov, R.: Neural map: Structured memory for deep reinforcement learning. CoRR abs/1702.08360 (2017)

    Google Scholar 

  57. Savinov, N., Dosovitskiy, A., Koltun, V.: Semi-parametric topological memory for navigation. arXiv preprint arXiv:1803.00653 (2018)

  58. Chaplot, D.S., Parisotto, E., Salakhutdinov, R.: Active neural localization. CoRR abs/1801.08214 (2018)

    Google Scholar 

  59. Karkus, P., Hsu, D.F.C., Lee, W.S.: QMDP-net: deep learning for planning under partial observability. In: NIPS (2017)

    Google Scholar 

Download references

Acknowledgement

The work was supported by the Skoltech NGP Program No. 1-NGP-1567 “Simulation and Transfer Learning for Deep 3D Geometric Data Analysis” (a Skoltech-MIT joint project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bernstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bernstein, A.V., Burnaev, E.V., Kachan, O.N. (2018). Reinforcement Learning for Computer Vision and Robot Navigation. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science(), vol 10935. Springer, Cham. https://doi.org/10.1007/978-3-319-96133-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96133-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96132-3

  • Online ISBN: 978-3-319-96133-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics