Skip to main content

Learning to Rank and Discover for E-Commerce Search

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10935))

Abstract

E-Commerce (E-Com) search is an emerging problem with multiple new challenges. One of the primary challenges constitutes optimizing it for relevance and revenue and simultaneously maintaining a discovery strategy. The problem requires designing novel strategies to systematically “discover” promising items from the inventory, that have not received sufficient exposure in search results while minimizing the loss of relevance and revenue because of that. To this end, we develop a formal framework for optimizing E-Com search and propose a novel epsilon-explore Learning to Rank (eLTR) paradigm that can be integrated with the traditional learning to rank (LTR) framework to explore new or less exposed items. The key idea is to decompose the ranking function into (1) a function of content-based features, (2) a function of behavioral features, and introduce a parameter epsilon to regulate their relative contributions. We further propose novel algorithms based on eLTR to improve the traditional LTR used in the current E-Com search engines by “forcing” exploration of a fixed number of items while limiting the relevance drop. We also show that eLTR can be considered to be monotonic sub-modular and thus we can design a greedy approximation algorithm with a theoretical guarantee. We conduct experiments with synthetic data and compare eLTR with a baseline random selection and an upper confidence bound (UCB) based exploration strategies. We show that eLTR is an efficient algorithm for such exploration. We expect that the formalization presented in this paper will lead to new research in the area of ranking problems for E-com marketplaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auer, P., Ortner, R.: UCB revisited: improved regret bounds for the stochastic multi-armed bandit problem. Period. Math. Hung. 61(1–2), 55–65 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bubeck, S., Cesa-Bianchi, N.: Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Found. Trends Mach. Learn. 5(1), 1–122 (2012)

    Article  Google Scholar 

  3. Burges, C.J.: From ranknet to lambdarank to lambdamart: an overview. Learning 11(23–581), 81 (2010)

    Google Scholar 

  4. Craswell, N.: Mean reciprocal rank. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 1703–1703. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-39940-9

    Chapter  Google Scholar 

  5. Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison of click position-bias models. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, pp. 87–94. WSDM 2008. ACM (2008)

    Google Scholar 

  6. Gabillon, V., Kveton, B., Wen, Z., Eriksson, B., Muthukrishnan, S.: Adaptive submodular maximization in bandit setting. In: Advances in Neural Information Processing Systems, pp. 2697–2705 (2013)

    Google Scholar 

  7. Gittins, J., Glazebrook, K., Weber, R.: Multi-armed Bandit Allocation Indices. Wiley, Hoboken (2011)

    Book  Google Scholar 

  8. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)

    Article  Google Scholar 

  9. Li, L., Chen, S., Kleban, J., Gupta, A.: Counterfactual estimation and optimization of click metrics in search engines: a case study. In: Proceedings of the 24th International Conference on World Wide Web, pp. 929–934. ACM (2015)

    Google Scholar 

  10. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp. 661–670. ACM (2010)

    Google Scholar 

  11. Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retr. 3(3), 225–331 (2009)

    Article  Google Scholar 

  12. Lovász, L.: Submodular functions and convexity. In: Bachem, A., Korte, B., Grötschel, M. (eds.) Mathematical Programming The State of the Art, pp. 235–257. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-68874-4_10

    Chapter  Google Scholar 

  13. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functionsi. Math. Program. 14(1), 265–294 (1978)

    Article  Google Scholar 

  14. Park, S.T., Chu, W.: Pairwise preference regression for cold-start recommendation. In: Proceedings of the Third ACM Conference on Recommender Systems, pp. 21–28. ACM (2009)

    Google Scholar 

  15. Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: Proceedings of the 25th annual international ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 253–260. ACM (2002)

    Google Scholar 

  16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT press, Cambridge (1998)

    Google Scholar 

  17. Svore, K.M., Volkovs, M.N., Burges, C.J.: Learning to rank with multiple objective functions. In: Proceedings of the 20th iNternational Conference on World Wide Web, pp. 367–376. ACM (2011)

    Google Scholar 

  18. Vermorel, J., Mohri, M.: Multi-armed Bandit algorithms and empirical evaluation. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 437–448. Springer, Heidelberg (2005). https://doi.org/10.1007/11564096_42

    Chapter  Google Scholar 

  19. Wilcox, R.R.: Introduction to Robust Estimation and Hypothesis Testing. Academic Press, Cambridge (2011)

    MATH  Google Scholar 

  20. Yue, Y., Guestrin, C.: Linear submodular bandits and their application to diversified retrieval. In: Advances in Neural Information Processing Systems, pp. 2483–2491 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Goswami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goswami, A., Zhai, C., Mohapatra, P. (2018). Learning to Rank and Discover for E-Commerce Search. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science(), vol 10935. Springer, Cham. https://doi.org/10.1007/978-3-319-96133-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96133-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96132-3

  • Online ISBN: 978-3-319-96133-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics