Abstract
Medical literature suffers from inconsistencies between reported findings that answer the same research question. This paper introduces an automated two-phase contradiction detection model that integrates semantic properties as input features to a Learning-to-Rank framework, to accurately identify key findings of a research article. It also relies on negation, antonyms and similarity measures to detect contradictions between findings. The proposed technique is implemented and tested on a publicly available contradiction corpus 259 manually annotated abstracts. The performance is compared based on recall, precision and F-measure. Experimental evaluations prove the utility of the model and its contribution to the contradiction classification and extraction task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alamri, A., Stevenson, M.: Automatic detection of answers to research questions from medline abstracts. In: Proceedings of BioNLP, vol. 15, pp. 141–146 (2015)
Alamri, A., Stevensony, M.: Automatic identification of potentially contradictory claims to support systematic reviews. In: Proceedings of IEEE International Conference Bioinformatics and Biomedicine (BIBM), pp. 930–937, November 2015. https://doi.org/10.1109/BIBM.2015.7359808
Alamri, A.: The detection of contradictory claims in biomedical abstracts. Ph.D. thesis, University of Sheffield (2016)
Alamri, A., Stevenson, M.: A corpus of potentially contradictory research claims from cardiovascular research abstracts. J. Biomed. Semant. 7(1), 36 (2016)
Burges, C.J.: From ranknet to lambdarank to lambdamart: an overview. Learning 11(23–581), 81 (2010)
Chapman, W.W., Bridewell, W., Hanbury, P., Cooper, G.F., Buchanan, B.G.: A simple algorithm for identifying negated findings and diseases in discharge summaries. J. Biomed. Inform. 34(5), 301–310 (2001)
Chen, R.C., Spina, D., Croft, W.B., Sanderson, M., Scholer, F.: Harnessing semantics for answer sentence retrieval. In: Proceedings of the Eighth Workshop on Exploiting Semantic Annotations in Information Retrieval, pp. 21–27. ACM (2015)
Chklovski, T., Pantel, P.: VerbOcean: mining the web for fine-grained semantic verb relations. In: EMNLP, vol. 4, pp. 33–40 (2004)
De Marneffe, M.C., Rafferty, A.N., Manning, C.D.: Finding contradictions in text. In: ACL, vol. 8, pp. 1039–1047 (2008)
Del Corro, L., Gemulla, R.: Clausie: clause-based open information extraction. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 355–366. ACM (2013)
Harabagiu, S., Hickl, A., Lacatusu, F.: Negation, contrast and contradiction in text processing. In: AAAI, vol. 6, pp. 755–762 (2006)
Ioannidis, J.P.: Why most published research findings are false. PLoS Med. 2(8), e124 (2005)
Pavlopoulos, I., Aris Kosmopoulos, I.A.: Continuous space word vectors obtained by applying word2vec to abstracts of biomedical articles. Technical report, NLP Group, Department of Informatics, Athens University of Economics and Business, Greece Institute of Informatics and Telecommunications, NCRS Demokritos, Greece (2014)
Jameson, J.L., Longo, D.L.: Precision medicine – personalized, problematic, and promising. Obstet. Gynecol. Surv. 70(10), 612–614 (2015)
Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant documents. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 41–48. ACM (2000)
Li, L., Qin, B., Liu, T.: Contradiction detection with contradiction-specific word embedding. Algorithms 10(2), 59 (2017)
Liu, T.Y., et al.: Learning to rank for information retrieval. Found. Trends® Inf. Retrieval 3(3), 225–331 (2009)
Metzler, D., Kanungo, T.: Machine learned sentence selection strategies for query-biased summarization. In: SIGIR Learning to Rank Workshop, pp. 40–47 (2008)
Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Padó, S., de Marneffe, M.C., MacCartney, B., Rafferty, A.N., Yeh, E., Manning, C.D.: Deciding entailment and contradiction with stochastic and edit distance-based alignment. In: TAC (2008)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980). Google Scholar
Prasad, V., Cifu, A., Ioannidis, J.P.: Reversals of established medical practices: evidence to abandon ship. Jama 307(1), 37–38 (2012)
Prasad, V., Vandross, A., Toomey, C., Cheung, M., Rho, J., Quinn, S., Chacko, S.J., Borkar, D., Gall, V., Selvaraj, S., et al.: A decade of reversal: an analysis of 146 contradicted medical practices. In: Mayo Clinic Proceedings, vol. 88, pp. 790–798. Elsevier (2013)
Preum, S.M., Mondol, A.S., Ma, M., Wang, H., Stankovic, J.A.: Preclude: conflict detection in textual health advice. In: 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 286–296. IEEE (2017)
Ritter, A., Downey, D., Soderland, S., Etzioni, O.: It’s a contradiction–no, it’s not: a case study using functional relations. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 11–20. Association for Computational Linguistics (2008)
Sarafraz, F.: Finding conflicting statements in the biomedical literature. Ph.D. thesis, University of Manchester (2012)
de Silva, N., Dou, D., Huang, J.: Discovering inconsistencies in pubmed abstracts through ontology-based information extraction. In: ACM Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM BCB) (2017, p. to appear)
Sox, H.C., Greenfield, S.: Comparative effectiveness research: a report from the institute of medicine. Ann. Internal Med. 151(3), 203–205 (2009)
Yang, L., Ai, Q., Spina, D., Chen, R.-C., Pang, L., Croft, W.B., Guo, J., Scholer, F.: Beyond factoid QA: effective methods for non-factoid answer sentence retrieval. In: Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 115–128. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30671-1_9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Tawfik, N.S., Spruit, M.R. (2018). Automated Contradiction Detection in Biomedical Literature. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science(), vol 10934. Springer, Cham. https://doi.org/10.1007/978-3-319-96136-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-96136-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96135-4
Online ISBN: 978-3-319-96136-1
eBook Packages: Computer ScienceComputer Science (R0)