Skip to main content

Machine Learning Applied to Point-of-Sale Fraud Detection

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2018)

Abstract

This paper applies machine learning (ML) techniques including neural networks, support vector machines Random Forest, and Adaboost to detecting insider fraud in restaurant point-of-sales data. With considerable engineering of the features, and by applying under-sampling techniques we show that ML techniques deliver very high fraud-detection performance. In particular, RandomForest can achieve 91% or better across all metrics when using a model trained on one restaurant to detect fraud in a separate restaurant. However, there must be sufficient fraud samples in the model for this to occur. Knowledge and techniques from this research could be used to develop a low-cost product to automate fraud detection for restaurant owners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Association of Certified Fraud Examiners (ACFE): Report to the nations on occupational fraud and abuse (2017)

    Google Scholar 

  2. National Restaurant Association: 2016 Restaurant operations report (2016)

    Google Scholar 

  3. Bhattacharyya, S., Jha, S., Tharakunnel, K., Westland, J.C.: Data mining for credit card fraud: a comparative study. In: 14th International Conference on Security and Cryptography, SECRYPT 2017 (2017)

    Google Scholar 

  4. Jotheeswaran, J., Loganathan, R., Madhu Sudhanan, B.: Feature reduction using principal component analysis for opinion mining. Int. J. Comput. Sci. Telecommun. 3(5), 118–121 (2012). ISSN 2047-3338

    Google Scholar 

  5. Phua, C., Lee, V., Smith, K., Gayler, R.: A comprehensive survey of data mining-based fraud detection research. In: 2010 International Conference on Intelligent Computation Technology and Automation, pp. 11–12, May 2010

    Google Scholar 

  6. Whitfield, C.A.: Guess who’s eating your profits: the manager’s essential guide to restaurant and bar loss prevention and investigations. AuthorHouse, 23 April 2013. ISBN-10: 1481725130

    Google Scholar 

  7. Patidar, R., Sharma, L.: Credit card fraud detection using neural network. Int. J. Soft Comput. Eng. (IJSCE) 1, 32–38 (2011). ISSN 2231-2307

    Google Scholar 

  8. Sahin, Y., Duman, E.: Detecting credit card fraud by decision trees and support vector machines. In: International MultiConference of Engineers and Computer Scientists (IMECS), 16–18 March 2011, vol. I, pp. 442–447 (2011)

    Google Scholar 

Download references

Acknowledgement

Data and expertise on normal restaurant server practices, and restaurant fraud was provided by an industry expert with over 20 years experience selling, installing, upgrading, troubleshooting, and providing training for POS systems in multiple geographic regions within the United States.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christine Hines or Abdou Youssef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hines, C., Youssef, A. (2018). Machine Learning Applied to Point-of-Sale Fraud Detection. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science(), vol 10934. Springer, Cham. https://doi.org/10.1007/978-3-319-96136-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96136-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96135-4

  • Online ISBN: 978-3-319-96136-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics