Abstract
Social networks, as an indispensable part of our daily lives, provide ideal platforms for entertainment and communication. However, the appearance of spammers who spread malicious information pollutes a network’s reliability. Unlike email spammers detection, a social network account has several types of attributes and complicated behavior patterns, which require a more sophisticated detection mechanism. To address the above challenges, we propose several efficient profiles and behavioral features to describe a social network account and a combined neural network to detect the spammers. The combined neural network can process the features separately based on their mutual correlation and handle data with missing features. In experiments, the combined neural network outperforms several classical machine learning approaches and achieves \(97.5\%\) accuracy on real data. The proposed features and the combined neural network have already been applied commercially.
W. Pei and Y. Xie have contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)
Chakraborty, A., Sundi, J., Satapathy, S., et al.: SPAM: a framework for social profile abuse monitoring. CSE508 report, Stony Brook University, Stony Brook (2012)
Chen, C., Wu, K., Srinivasan, V., Zhang, X.: Battling the internet water army: detection of hidden paid posters. In: 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 116–120. IEEE (2013)
Cheng, H.T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10. ACM (2016)
Cheng, Z., Kai, N., Zhiqiang, H.: Dynamic detection of spammers in Weibo. In: 2014 4th IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC), pp. 112–116. IEEE (2014)
Khan, A., Baharudin, B., Lee, L.H., Khan, K.: A review of machine learning algorithms for text-documents classification. J. Adv. Inf. Technol. 1(1), 4–20 (2010)
Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Liu, Y., Wu, B., Wang, B., Li, G.: SDHM: a hybrid model for spammer detection in Weibo. In: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 942–947. IEEE (2014)
Ming, L., Yunchun, L., Wei, L.: Spam filtering by stages. In: International Conference on Convergence Information Technology, pp. 2209–2213. IEEE (2007)
O’Donovan, J., Kang, B., Meyer, G., Hollerer, T., Adalii, S.: Credibility in context: an analysis of feature distributions in Twitter. In: 2012 International Conference on Privacy, Security, Risk and Trust (PASSAT) and 2012 International Conference on Social Computing (SocialCom), pp. 293–301. IEEE (2012)
Ruan, G., Tan, Y.: A three-layer back-propagation neural network for spam detection using artificial immune concentration. Soft. Comput. 14(2), 139–150 (2010)
Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Wang, A.H.: Detecting spam bots in online social networking sites: a machine learning approach. In: Foresti, S., Jajodia, S. (eds.) DBSec 2010. LNCS, vol. 6166, pp. 335–342. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13739-6_25
Xie, Y., Tang, G., Hoff, W.: Chess piece recognition using oriented chamfer matching with a comparison to CNN. In: IEEE Winter Conference on Applications of Computer Vision (WACV) (2018)
Yeh, C.Y., Wu, C.H., Doong, S.H.: Effective spam classification based on meta-heuristics. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3872–3877. IEEE (2005)
Zheng, X., Wang, J., Jie, F., Li, L.: Two phase based spammer detection in Weibo. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 932–939. IEEE (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Pei, W., Xie, Y., Tang, G. (2018). Spammer Detection via Combined Neural Network. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science(), vol 10934. Springer, Cham. https://doi.org/10.1007/978-3-319-96136-1_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-96136-1_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96135-4
Online ISBN: 978-3-319-96136-1
eBook Packages: Computer ScienceComputer Science (R0)