Skip to main content

Automated Machine Learning Algorithm Mining for Classification Problem

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10934))

Abstract

Hyper-parameter optimization and the identification of the learning algorithm best suited to a particular dataset can be exceedingly difficult. Researchers have developed automated methods for the selection of an algorithm and the associated hyper-parameters; however, this approach is not necessarily applicable to other datasets. In this paper, we present a method for the selection of a learning algorithm while simultaneously setting the hyper-parameters in a two-stage process: (1) Identification of important hyper-parameters to streamline the optimization process, and (2) Heuristic formulation based on sequence analysis to limit the long-tuning time and identify the optimal algorithm/ hyper-parameter combination. The proposed method greatly reduces the training time without a significant loss of performance in classification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali, S., Smith, K.: On learning algorithm selection for classification. Appl. Soft Comput. 6, 119–138 (2006)

    Article  Google Scholar 

  2. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Advances in Neural Information Processing Systems, pp. 2546–2554 (2011)

    Google Scholar 

  3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Bernard, S., Heutte, L., Adam, S.: Influence of hyperparameters on random forest accuracy. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 171–180. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02326-2_18

    Chapter  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  6. Caruana, R., Lawrence, S., Giles, L.: Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. In: Proceedings of the 13th International Conference on Neural Information Processing Systems, pp. 381–387 (2000)

    Google Scholar 

  7. Collobert, R., Bengio, S.: Links between perceptrons, MLPs and SVMs. In: Proceedings of the Twenty-First International Conference on Machine Learning, pp. 23–30 (2004)

    Google Scholar 

  8. Duvenaud, D., Maclaurin, D., Adams, R.: Early stopping as nonparametric variational inference. In: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pp. 1070–1077 (2016)

    Google Scholar 

  9. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15, 3133–3181 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Fidler, F., Thompson, B.: Computing correct confidence intervals for ANOVA fixed- and random-effects effect sizes. Educ. Psychol. Measur. 61, 575–604 (2001)

    MathSciNet  Google Scholar 

  11. Hooker, G.: Generalized functional ANOVA diagnostics for high-dimensional functions of dependent variables. J. Comput. Graph. Stat. 16, 709–732 (2007)

    Article  MathSciNet  Google Scholar 

  12. Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black box functions. J. Glob. Optim. 13, 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  13. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, pp. 1137–1143 (1995)

    Google Scholar 

  14. Komer, B., Bergstra, J., Eliasmith, C.: Hyperopt-Sklearn: automatic hyperparameter configuration for scikit-learn. In: ICML Workshop on AutoML (2014)

    Google Scholar 

  15. Lin, S., Ying, K., Chen, S., Lee, Z.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35, 1817–1824 (2008)

    Article  Google Scholar 

  16. Luo, G.: A review of automatic selection methods for machine learning algorithms and hyper-parameter values. Netw. Model. Anal. Health Inform. Bioinform. 5, 18 (2016)

    Article  Google Scholar 

  17. Masini, S., Bientinesi, P.: High-performance parallel computations using python as high-level language. In: Guarracino, Mario R., et al. (eds.) Euro-Par 2010. LNCS, vol. 6586, pp. 541–548. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21878-1_66

    Chapter  Google Scholar 

  18. McElroy, F.: A necessary and sufficient condition that ordinary least-squares estimators be best linear unbiased. J. Am. Stat. Assoc. 62, 1302 (1967)

    Article  MathSciNet  Google Scholar 

  19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Pedregosa, F.: Hyperparameter optimization with approximate gradient. In: Proceedings of the International Conference on Machine Learning, pp. 737–746 (2016)

    Google Scholar 

  21. Prechelt, L.: Automatic early stopping using cross validation: quantifying the criteria. Neural Netw. 11, 761–767 (1998)

    Article  Google Scholar 

  22. Puntanen, S., Styan, G.: The equality of the ordinary least squares estimator and the best linear unbiased estimator. Am. Stat. 43, 153 (1989)

    MathSciNet  Google Scholar 

  23. Rao, C.: Linear Statistical Inference and Its Applications. Wiley, New York (2002)

    Google Scholar 

  24. Schreuder, M., Höhne, J., Blankertz, B., Haufe, S., Dickhaus, T., Tangermann, M.: Optimizing event-related potential based brain–computer interfaces: a systematic evaluation of dynamic stopping methods. J. Neural Eng. 10, 036025 (2013)

    Article  Google Scholar 

  25. Skipper, S., Josef, P.: Statsmodels: econometric and statistical modeling with python. In: Proceedings of the 9th Python in Science Conference, pp. 57–61 (2010)

    Google Scholar 

  26. Snoek, J., Larochelle, H., Adams, R.: Practical Bayesian optimization of machine learning algorithms. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, pp. 2951–2959 (2012)

    Google Scholar 

  27. Thornton, C., Hutter, F., Hoos, H., Leyton-Brown, K.: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 847–855 (2013)

    Google Scholar 

  28. Witten, I., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools and Techniques. Elsevier, Amsterdam (2011)

    Google Scholar 

  29. Wolpert, D.: The lack of a priori distinctions between learning algorithms. Neural Comput. 8, 1341–1390 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to the anonymous reviewers and editor. This work was sponsored by Ministry of Economic Affairs, Taiwan, R.O.C. through project No. G301ARY910 conducted by ITRI. The author would like to thank the anonymous reviewers for their detailed comments and suggestions that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Sung Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, MS., Lu, JY. (2018). Automated Machine Learning Algorithm Mining for Classification Problem. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science(), vol 10934. Springer, Cham. https://doi.org/10.1007/978-3-319-96136-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96136-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96135-4

  • Online ISBN: 978-3-319-96136-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics