Skip to main content

Risk Scores Learned by Deep Restricted Boltzmann Machines with Trained Interval Quantization

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10934))

  • 1845 Accesses

Abstract

A compact easily applicable and highly accurate classification model is of a big interest in decision making. A simple scoring system which stratifies patients efficiently can help a clinician in diagnostics or with the choice of treatment. Deep learning methods are becoming the preferred approach for various applications in artificial intelligence and machine learning, since they usually achieve the best accuracy. However, deep learning models are complex systems with non-linear data transformation, what makes it challenging to use them as scoring systems. The state-of-the-art deep models are sparse, in particular, deep models with ternary weights are reported to be efficient in image processing. However, the ternary models seem to be not expressive enough in many tasks. In this contribution, we introduce an interval quantization method which learns both the codebook index and the codebook values, and results in a compact but powerful model.

We show by experiments on several standard benchmarks that the proposed approach achieves the state-of-the-art performance in terms of generalizing accuracy, and outperforms modern approaches in terms of storage and computational efficiency. We also consider a real biomedical problem of a type 2 diabetes remission, and discuss how the trained model can be used as a predictive medical score, and be helpful for physicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.cs.toronto.edu/~rsalakhu/DBM.html.

  2. 2.

    http://archive.ics.uci.edu/ml/.

References

  1. Antman, E., Cohen, M., Bernink, P., McCabe, C., Horacek, T., Papuchis, G., Mautner, B., Corbalan, R., Radley, D., Braunwald, E.: The TIMI risk score for unstable angina/non-ST elevation MI. J. Am. Med. Assoc. 284, 835–842 (2000)

    Article  Google Scholar 

  2. Courbariaux, M., Bengio, Y., David, J.-P.: Binaryconnect: training deep neural networks with binary weights during propagations. In: NIPS (2015)

    Google Scholar 

  3. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks. In: NIPS (2016)

    Google Scholar 

  4. Gage, B.F., Waterman, A.D., Shannon, W., Boechler, M., Rich, M.W., Radford, M.J.: Validation of clinical classification schemes for predicting stroke. J. Am. Med. Assoc. 285, 2864–2870 (2001)

    Article  Google Scholar 

  5. Le Gall, J.-R., Lemeshow, S., Saulnier, F.: A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. J. Am. Med. Assoc. 270, 2957–2963 (1993)

    Article  Google Scholar 

  6. Golovin, D., Sculley, D., McMahan, H.B., Young, M.: Large-scale learning with less RAM via randomization. In: ICML (2013)

    Google Scholar 

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  8. Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  9. Hjelma, D., Calhouna, V., Salakhutdinov, R., Allena, E., Adali, T., Plisa, S.: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks. NeuroImage 96, 245–260 (2014)

    Article  Google Scholar 

  10. Hwang, K., Sung, W.: Fixed-point feedforward deep neural network design using weights +1, 0, and \(-1\). In: SiPS (2014)

    Google Scholar 

  11. Kim, M., Smaragdis, P.: Bitwise neural networks. In: ICML Workshop on Resource-Efficient Machine Learning (2015)

    Google Scholar 

  12. Knaus, W.A., Zimmerman, J.E., Wagner, D.P., Draper, E.A., Lawrence, D.E.: APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit. Care Med. 9, 591–597 (1981)

    Article  Google Scholar 

  13. Li, F., Zhang, B., Liu, B.: Ternary weight networks. In: NIPS, Workshop on EMDNN (2016)

    Google Scholar 

  14. Lichman, M.: UCI Machine Learning Repository (2013)

    Google Scholar 

  15. Lin, Z., Courbariaux, M., Memisevic, R., Bengio, Y.: Neural networks with few multiplications. CoRR, abs/1510.03009 (2015)

    Google Scholar 

  16. Moreno, R., Metnitz, P., Almeida, E., Jordan, B., Bauer, P., Abizanda, R., Campos, R.A., Iapichino, G., Edbrooke, D., Capuzzo, M., Le Gall, J.-R.: SAPS 3-from evaluation of the patient to evaluation of the intensive care unit. Part 2: development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 31, 1345–1355 (2005)

    Article  Google Scholar 

  17. Nguyen, T.D., Phung, D., Huynh, V., Lee, T.: Supervised restricted Boltzmann machines. In: UAI (2017)

    Google Scholar 

  18. Peters, A., Hothorn, T., Lausen, B.: ipred: Improved predictors. R News 2(2), 33–36 (2002)

    Google Scholar 

  19. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. In: AISTATS (2009)

    Google Scholar 

  20. Salakhutdinov, R., Hinton, G.: A better way to pretrain deep Boltzmann machines. In: NIPS (2012)

    Google Scholar 

  21. Salakhutdinov, R., Hinton, G.: An efficient learning procedure for deep Boltzmann machines. Neural Comput. 24(8), 1967–2006 (2012)

    Article  MathSciNet  Google Scholar 

  22. Salakhutdinov, R., Larochelle, H.: Efficient learning of deep Boltzmann machines. In: AISTATS (2010)

    Google Scholar 

  23. Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep Boltzmann machines. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Srivastava, N., Salakhutdinov, R., Hinton, G.: Modeling documents with deep Boltzmann machines. In: UAI (2013)

    Google Scholar 

  25. Still, C.D., et al.: A probability score for preoperative prediction of type 2 diabetes remission following RYGB surgery. Lancet Diabetes Endocrinol. 2(1), 38–45 (2014)

    Article  Google Scholar 

  26. Ustun, B., Rudin, C.: Supersparse linear integer models for optimized medical scoring systems. Mach. Learn. 102, 349–391 (2015)

    Article  MathSciNet  Google Scholar 

  27. Ustun, B., Rudin, C.: Learning optimized risk scores from large-scale datasets. In: KDD (2017)

    Google Scholar 

  28. Zhang, Y., Salakhutdinov, R., Chang, H.-A., Glass, J.: Resource configurable spoken query detection using deep Boltzmann machines. In: ICASSP (2012)

    Google Scholar 

  29. Zhu, C., Han, S., Mao, H., Dally, W.J.: Trained ternary quantization. In: ICLR (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by PEPS (CNRS, France), project MaLeFHYCe, and by the French National Research Agency (ANR JCJC DiagnoLearn).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliya Sokolovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sokolovska, N., Chevaleyre, Y., Zucker, JD. (2018). Risk Scores Learned by Deep Restricted Boltzmann Machines with Trained Interval Quantization. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science(), vol 10934. Springer, Cham. https://doi.org/10.1007/978-3-319-96136-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96136-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96135-4

  • Online ISBN: 978-3-319-96136-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics