Abstract
Given an undirected rooted graph, a cycle containing the root vertex is called a rooted cycle. We study the combinatorial duality between vertex-covers of rooted-cycles, which generalize classical vertex-covers, and packing of disjoint rooted cycles, where two rooted cycles are vertex-disjoint if their only common vertex is the root node. We use Menger’s theorem to provide a characterization of all rooted graphs such that the maximum number of vertex-disjoint rooted cycles equals the minimum size of a subset of non-root vertices intersecting all rooted cycles, for all subgraphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in vertex weighted graphs. J. Algorithms 50, 49–61 (2004)
Jost, V., Naves, G.: The graphs with the max-Mader-flow-min-multiway-cut property. CoRR abs/1101.2061 (2011)
Kőnig, D.: Graphok és alkalmazásuk a determinánsok és a halmazok elméletére [Hungarian]. Mathematikai és Természettudományi Értesitő 34, 104–119 (1916)
Menger, K.: Zur allgemeinen Kurventheorie. Fundam. Math. 10, 96–115 (1927)
Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Cornaz, D., Magnouche, Y. (2018). The Minimum Rooted-Cycle Cover Problem. In: Lee, J., Rinaldi, G., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2018. Lecture Notes in Computer Science(), vol 10856. Springer, Cham. https://doi.org/10.1007/978-3-319-96151-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-96151-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96150-7
Online ISBN: 978-3-319-96151-4
eBook Packages: Computer ScienceComputer Science (R0)