Abstract
In the Firefighter problem, introduced by Hartnell in 1995, a fire spreads through a graph while a player chooses which vertices to protect in order to contain it. In this paper, we focus on the case of trees and we consider as well the Fractional Firefighter game where the amount of protection allocated to a vertex lies between 0 and 1. We introduce the online version of both Firefighter and Fractional Firefighter, in which the number of firefighters available at each turn is revealed over time. We show that the greedy algorithm on finite trees, which maximises at each turn the amount of vertices protected, is 1/2-competitive for both online versions; this was previously known only in special cases of Firefighter. We also show that, for Firefighter, the optimal competitive ratio of online algorithms ranges between 1/2 and the inverse of the golden ratio. The greedy algorithm is optimal if the number of firefighters is not bounded and we propose an optimal online algorithm which reaches the inverse of the golden ratio if at most 2 firefighters are available. Finally, we show that on infinite trees with linear growth, any firefighter sequence stronger than a non-zero periodic sequence is sufficient to contain the fire, even when revealed online.
B. Jouve—We acknowledge the support of GEO-SAFE, H2020-MSCA-RISE-2015 project # 691161.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hartnell, B.: Firefighter! an application of domination. Presented at the 10th Conference on Numerical Mathematics and Computing, University of Manitoba in Winnipeg, Canada (1995)
Finbow, S., MacGillivray, G.: The firefighter problem: a survey of results, directions and questions. Australas. J. Comb. 43(6), 57–77 (2009)
Finbow, S., King, A., Macgillivray, G., Rizzi, R.: The firefighter problem for graphs of maximum degree three. Discrete Math. 307(16), 2094–2105 (2007)
Fomin, F.V., Heggernes, P., van Leeuwen, E.J.: The firefighter problem on graph classes. Theor. Computut. Sci. 613(C), 38–50 (2016)
Cai, L., Verbin, E., Yang, L.: Firefighting on trees: (1–1/e)-approximation, fixed parameter tractability and a subexponential algorithm. In: Proceedings of 19th International Symposium on Algorithms and Computation, ISAAC 2008, Gold Coast, Australia, 15–17 December 2008, pp. 258–269 (2008)
Bazgan, C., Chopin, M., Ries, B.: The firefighter problem with more than one firefighter on trees. Discrete Appl. Math. 161(7–8), 899–908 (2013)
Bazgan, C., Chopin, M., Cygan, M., Fellows, M.R., Fomin, F.V., van Leeuwen, E.J.: Parameterized complexity of firefighting. J. Comput. Syst. Sci. 80(7), 1285–1297 (2014)
Hartnell, B., Li, Q.: Firefighting on trees: how bad is the greedy algorithm? Congressus Numerantium 145, 187–192 (2000)
Adjiashvili, D., Baggio, A., Zenklusen, R.: Firefighting on trees beyond integrality gaps. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, 16–19 January 2017, pp. 2364–2383 (2017)
Anshelevich, E., Chakrabarty, D., Hate, A., Swamy, C.: Approximability of the firefighter problem - computing cuts over time. Algorithmica 62(1–2), 520–536 (2012)
Hartke, S.G.: Attempting to narrow the integrality gap for the firefighter problem on trees. In: Discrete Methods in Epidemiology, pp. 225–232 (2004)
MacGillivray, G., Wang, P.: On the firefighter problem. J. Comb. Math. Comb. Comput. 47, 83–96 (2003)
Fogarty, P.: Catching the Fire on Grids, Ph.D. thesis. University of Vermont (2003)
Ausiello, G., Becchetti, L.: On-line algorithms. In: Paschos, V.T. (ed.) Paradigms of Combinatorial Optimization: Problems and New Approaches, vol. 2, pp. 473–509. ISTE - WILEY, London - Hoboken (2010)
Chalermsook, P., Vaz, D.: New integrality gap results for the firefighters problem on trees. In: Jansen, K., Mastrolilli, M. (eds.) WAOA 2016. LNCS, vol. 10138, pp. 65–77. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51741-4_6
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Coupechoux, P., Demange, M., Ellison, D., Jouve, B. (2018). Online Firefighting on Trees. In: Lee, J., Rinaldi, G., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2018. Lecture Notes in Computer Science(), vol 10856. Springer, Cham. https://doi.org/10.1007/978-3-319-96151-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-96151-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96150-7
Online ISBN: 978-3-319-96151-4
eBook Packages: Computer ScienceComputer Science (R0)