Abstract
Funnels are a new natural subclass of DAGs. Intuitively, a DAG is a funnel if every source-sink path can be uniquely identified by one of its arcs. Funnels are an analog to trees for directed graphs that is more restrictive than DAGs but more expressive than in-/out-trees. Computational problems such as finding vertex-disjoint paths or tracking the origin of memes remain NP-hard on DAGs while on funnels they become solvable in polynomial time. Our main focus is the algorithmic complexity of finding out how funnel-like a given DAG is. To this end, we study the NP-hard problem of computing the arc-deletion distance to a funnel of a given DAG. We develop efficient exact and approximation algorithms for the problem and test them on synthetic random graphs and real-world graphs.
M. G. Millani—Partially supported by the DFG, project FPTinP (NI 369/16).
H. Molter—Partially supported by the DFG, project MATE (NI 369/17).
M. Sorge—Supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement number 631163.11 and Israel Science Foundation (grant no. 551145/14).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
There is also a simple \({\mathcal {O}(5^d\cdot \left| V\right| \cdot \left| A\right| )}\)-time algorithm for general digraphs [15].
- 2.
A full version is available on arXiv [17].
- 3.
A graph H is called a topological minor of a graph G if a subgraph of G can be obtained from H by subdividing edges (that is, replacing arcs by directed paths).
- 4.
Listed at https://www.archlinux.org/packages/ and obtained using pacman.
References
Ailon, N., Alon, N.: Hardness of fully dense problems. Inf. Comput. 205(8), 1117–1129 (2007)
Bang-Jensen, J., Gutin, G.Z.: Digraphs: Theory, Algorithms and Applications. Springer Monographs in Mathematics. Springer, London (2008). https://doi.org/10.1007/978-1-84800-998-1
Bessy, S., Fomin, F.V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S.: Kernels for feedback arc set in tournaments. J. Comput. Syst. Sci. 77(6), 1071–1078 (2011)
van Bevern, R., Bredereck, R., Chopin, M., Hartung, S., Hüffner, F., Nichterlein, A., Suchý, O.: Fixed-parameter algorithms for DAG partitioning. Discrete Appl. Math. 220, 134–160 (2017)
Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math. 127(3), 415–429 (2003)
Charbit, P., Thomassé, S., Yeo, A.: The minimum feedback arc set problem is NP-hard for tournaments. Comb. Probab. Comput. 16(1), 1–4 (2007)
Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theor. Comput. Sci. 10(2), 111–121 (1980)
Ganian, R., Hlinený, P., Kneis, J., Langer, A., Obdrzálek, J., Rossmanith, P.: Digraph width measures in parameterized algorithmics. Discrete Appl. Math. 168, 88–107 (2014)
Ganian, R., Hlinený, P., Kneis, J., Meister, D., Obdrzálek, J., Rossmanith, P., Sikdar, S.: Are there any good digraph width measures? J. Comb. Theory Ser. B 116, 250–286 (2016)
Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: distance from triviality. In: Downey, R., Fellows, M., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28639-4_15
Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: Proceedings of the 39th STOC, pp. 95–103. ACM (2007)
Kunegis, J.: KONECT - The Koblenz network collection. In: Proceedings of the 22nd WWW, pp. 1343–1350. ACM (2013)
Lehmann, J.: The computational complexity of worst case flows in unreliable flow networks. Bachelor thesis, Institut für Theoretische Informatik, Universität zu Lübeck, October 2017
Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: Proceedings of 15th ACM SIGKDD, pp. 497–506. ACM (2009)
Millani, M.G.: Funnels–algorithmic complexity of problems on special directed acyclic graphs. Master thesis, Department of Electrical Engineering and Computer Science, TU Berlin, August 2017. http://fpt.akt.tu-berlin.de/publications/theses/MA-marcelo-millani.pdf
Millani, M.G.: Parfunn - Parameters for Funnels, August 2017. https://gitlab.tubit.tu-berlin.de/mgmillani1/parfunn
Millani, M.G., Molter, H., Niedermeier, R., Sorge, M.: Efficient algorithms for measuring the funnel-likeness of DAGs. CoRR abs/1801.10401 (2018)
Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proceedings of the 27th STACS, pp. 17–32. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Millani, M.G., Molter, H., Niedermeier, R., Sorge, M. (2018). Efficient Algorithms for Measuring the Funnel-Likeness of DAGs. In: Lee, J., Rinaldi, G., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2018. Lecture Notes in Computer Science(), vol 10856. Springer, Cham. https://doi.org/10.1007/978-3-319-96151-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-96151-4_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96150-7
Online ISBN: 978-3-319-96151-4
eBook Packages: Computer ScienceComputer Science (R0)