Skip to main content

Petri Nets in Systems Biology: Transition Invariants, Maximal Common Transition Sets, Transition Clusters, Mauritius Maps, and MonaLisa

  • Chapter
  • First Online:
Carl Adam Petri: Ideas, Personality, Impact

Abstract

Carl Adam Petri’s personality, curiosity and ideas inspired the author’s team in their work on modeling biochemical systems. Petri nets now represent a well-established approach in the systems biology community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.N. Reddy, M.L. Mavrovouniotis, M.N. Liebman, Petri net representations in metabolic pathways. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1, 328–336 (1993)

    Google Scholar 

  2. S. Schuster, C. Hilgetag, On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 2(2), 165–182 (1994)

    Article  Google Scholar 

  3. K. Lautenbach, Exact Liveness Conditions of a Petri Net Class. GMD, Report 82, Bonn (in German) (1973)

    Google Scholar 

  4. S. Schuster, T. Pfeiffer, F. Moldenhauer, I. Koch, T. Dandekar, Exploring the pathway structure of metabolism: decomposition into subnetworks and application to, Mycoplasma pneumoniae. Bioinformatics 18(2), 351–361 (2002)

    Article  Google Scholar 

  5. I. Koch, B.H. Junker, M. Heiner, Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber. Bioinformatics 21(7), 1219–1226 (2005)

    Article  Google Scholar 

  6. A. Sackmann, M. Heiner, I. Koch, Application of Petri net based analysis techniques to signal transaction pathways. BMC Bioinform. 4(7), 482 (2006)

    Article  Google Scholar 

  7. S. Grunwald, A. Speer, J. Ackermann, I. Koch, Petri net modelling of gene regulation of the Duchenne muscular dystrophy. BioSystems 92(2), 189–205 (2008)

    Article  Google Scholar 

  8. W. Reisig, Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies (Springer, Berlin, 2013)

    Book  Google Scholar 

  9. I. Koch, W. Reisig, F. Schreiber, Modeling in Systems Biology: The Petri Net Approach (Springer, Berlin, 2011)

    Book  Google Scholar 

  10. I.C. Liao, S.Y. Hou, Y. Chao, Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol. Bioeng. 5(1), 129–140 (1996)

    Article  Google Scholar 

  11. S. Schuster, T. Dandekar, D.A. Fell, Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17(2), 53–60 (1999)

    Article  Google Scholar 

  12. E. Fischer, U. Sauer, A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J. Biol. Chem. 278(47), 46446–46451 (2003)

    Article  Google Scholar 

  13. D. Bajusz, A. Rácz, K. Héberger, Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform. 7, 20 (2015)

    Article  Google Scholar 

  14. E. Grafahrend-Belau, F. Schreiber, M. Heiner, A. Sackmann, B.H. Junker, G. Stefanie, S. Astrid, K. Winder, J. Koch, Modularisation of biochemical networks based on classification of Petri net t-invariants. BMC Bioinform. 9, 90 (2008)

    Article  Google Scholar 

  15. J. Scheidel, L. Amstein, J. Ackermann, I. Dikic, I. Koch, In silico knockout studies of Xenophagic capturing of Salmonella. PLoS Comput. Biol. 12(12), e1005200 (2016)

    Article  Google Scholar 

  16. I. Koch, J. Ackermann, On functional module detection in metabolic networks. Metabolites 3(3), 673–700 (2013)

    Article  Google Scholar 

  17. J. Einloft, J. Ackermann, J. Nöthen, I. Koch, MonaLisa – visualization and analysis of functional modules in biochemical networks. Bioinformatics 29(11), 1469–1470 (2013)

    Article  Google Scholar 

  18. P. Balazki, K. Lindauer, J. Einloft, J. Ackermann, I. Koch, MONALISA for stochastic simulations of Petri net models of biochemical systems. BMC Bioinform. 16, 215 (2015)

    Article  Google Scholar 

  19. M. Courtot, N. Juty, C. Knüpfer, D. Waltemath, A. Zhukova, A. Dräger, M. Dumontier, A. Finney, M. Golebiewski, J. Hastings, S. Hoops, S. Keating, D.B. Kell, S. Kerrien, J. Lawson, A. Lister, J. Lu, R. Machne, P. Mendes, M. Pocock, N. Rodriguez, A. Villeger, D.J. Wilkinson, T. Wimalaratne, C. Laibe, M. Hucka, N. Le Novère, Model storage, exchange and integration. Mol. Syst. Biol. 7, 543 (2011)

    Article  Google Scholar 

  20. H. Matsuno, A. Doi, M. Nagasaki, S. Miyano, Hybrid Petri net representation of gene regulatory network. Proc. Pac. Symp. Biocomput. 5, 338–349 (2000)

    Google Scholar 

  21. S. Hardy, P.N. Robillard, Modelling and simulation of molecular biology systems using Petri nets: modelling goals of various approaches. J. Bioinform. Comput. Biol. 2(4), 595–613 (2004)

    Article  Google Scholar 

  22. M. Peleg, D. Rubin, R.B. Altman, Using Petri Net tools to study properties and dynamics of biological systems. J. Am. Med. Inform. Assoc. 12(2), 181–199 (2005)

    Article  Google Scholar 

  23. I. Koch, C. Chaouiya, Discrete modelling Petri net and logical approaches, in Systems Biology for Signaling Networks, ed. by S. Choi (Springer, New York, 2010), pp. 821–856

    Chapter  Google Scholar 

  24. E.M. Rodriguez, A. Rudy, R.C. del Rosario, A.M. Vollmar, E.R. Mendoza, A discrete Petri net model for cephalostatin-induced apoptosis in leukemic cells. Nat. Comput. 10(3), 993–1015 (2011)

    Article  MathSciNet  Google Scholar 

  25. G. Minervini, E. Panizzoni, M. Giollo, A. Masiero, C. Ferrari, S.C. Tosatto, Design and analysis of a Petri net model of the Von Hippel-Lindau (VHL) tumor suppressor interaction network. PLoS ONE 9(6), 96986 (2014)

    Article  Google Scholar 

  26. J. Scheidel, K. Lindauer, J. Ackermann, I. Koch, Quasi-steady-state analysis based on structural modules and timed Petri net predict system’s dynamics: the life cycle of the insulin receptor. Metabolites 5(4), 766–793 (2015)

    Article  Google Scholar 

  27. L. Amstein, J. Ackermann, J. Scheidel, S. Fulda, I. Dikic, I. Koch, Manatee invariants reveal functional pathways in signaling networks. BMC Syst. Biol. 11, 72 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koch, I. (2019). Petri Nets in Systems Biology: Transition Invariants, Maximal Common Transition Sets, Transition Clusters, Mauritius Maps, and MonaLisa. In: Reisig, W., Rozenberg, G. (eds) Carl Adam Petri: Ideas, Personality, Impact. Springer, Cham. https://doi.org/10.1007/978-3-319-96154-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96154-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96153-8

  • Online ISBN: 978-3-319-96154-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics