Skip to main content

Reconstruction of the 3D Scenes from the Matching Between Image Pair Taken by an Uncalibrated Camera

  • Conference paper
  • First Online:
Big Data, Cloud and Applications (BDCA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 872))

Included in the following conference series:

  • 1130 Accesses

Abstract

In this paper, we will study a new approach of reconstruction of three-dimensional scenes from an auto calibration method of camera characterized by variable parameters. Indeed, obtaining the 3D scene is based on the Euclidean reconstruction of the interest points detected and matched between pair of images. The relationship between the matches and camera parameters is used to formulate a nonlinear equation system. This system is transformed into a nonlinear cost function, which will be minimized to determine the intrinsic and extrinsic camera parameters and subsequently estimate the projection matrices. Finally, the coordinates of the 3D points of the scene are obtained by solving a linear equation system. The results of the experiments show the strengths of this contribution in terms of precision and convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lourakis, M.I.A., Deriche, R.: Camera self-calibration using the kruppa equations and the SVD of the fundamental matrix: the case of varying intrinsic parameters. Technical report 3911, INRIA (2000)

    Google Scholar 

  2. Sturm, P.: Critical motion sequences for the self-calibration of cameras and stereo systems with variable focal length. Image Vis. Comput. 20(5–6), 415–426 (2002)

    Article  Google Scholar 

  3. Malis, E., Capolla, R.: Camera self-calibration from unknown planar structures enforcing the multi-view constraints between collineations. IEEE Trans. Pattern Anal. Mach. Intell. 4(9) (2002)

    Google Scholar 

  4. Gurdjos, P., Sturm, P.: Methods and geometry for plane-based self-calibration. In: CVPR, pp. 491–496 (2003)

    Google Scholar 

  5. Liu, P., Shi, J., Zhou, J., Jiang, L.: Camera self-calibration using the geometric structure in real scenes. In: Proceedings of the Computer Graphics International (2003)

    Google Scholar 

  6. Hemayed, E.E.: A survey of camera self-calibration. In: Proceedings of the IEEE Conference on AVSS (2003)

    Google Scholar 

  7. Zhang, W.: A simple method for 3D reconstruction from two views. In: GVIP 05 Conference, CICC, Cairo, Egypt, December 2005

    Google Scholar 

  8. Boudine, B., Kramm, S., El Akkad, N., Bensrhair, A., Saaidi, A., Satori, K.: A flexible technique based on fundamental matrix for camera self-calibration with variable intrinsic parameters from two views. J. Vis. Commun. Image R. 39, 40–50 (2016)

    Article  Google Scholar 

  9. El Akkad, N., Merras, M., Saaidi, A., Satori, K.: Camera self-calibration with varying intrinsic parameters by an unknown three-dimensional scene. Vis. Comput. 30(5), 519–530 (2014)

    Article  Google Scholar 

  10. El Akkad, N., Merras, M., Saaidi, A., Satori, K.: Camera self-calibration with varying parameters from two views. WSEAS Trans. Inf. Sci. Appl. 10(11), 356–367 (2013)

    Google Scholar 

  11. Torr, P.H.S., Murray, D.W.: The development and comparison of robust methods for estimating the fundamental matrix. IJCV 24, 271–300 (1997)

    Article  Google Scholar 

  12. Trajkovic, M., Hedley, M.: Fast corner detection. Image Vis. Comput. 16, 75–87 (1998)

    Article  Google Scholar 

  13. Harris, C., Stephens, M.: A combined corner et edge detector. In: 4th Alvey vision Conference, pp. 147–151 (1988)

    Google Scholar 

  14. Smith, S.M., Brady, J.M.: A new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)

    Article  Google Scholar 

  15. Saaidi, A., Tairi, H., Satori, K.: Fast stereo matching using rectification and correlation techniques. In: ISCCSP, Second International Symposium on Communications, Control And Signal Processing, Marrakech, Morrocco, March 2006

    Google Scholar 

  16. Chambon, S., Crouzil, A.: Similarity measures for image matching despite occlusions in stereo vision. Pattern Recognit. 44(9), 2063–2075 (2011)

    Article  Google Scholar 

  17. Mattoccia, S., Tombari, F., Di Stefano, L.: Fast full-search equivalent template matching by enhanced bounded correlation. IEEE Trans. Image Process. 17(4), 528–538 (2008)

    Article  MathSciNet  Google Scholar 

  18. Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 630, pp. 105–116. Springer, Heidelberg (1978). https://doi.org/10.1007/BFb0067700

    Chapter  Google Scholar 

  19. El Akkad, N., El Hazzat, S., Saaidi, A., Satori, K.: Reconstruction of 3D scenes by camera self-calibration and using genetic algorithms. 3D Res. 7, 6 (2016)

    Article  Google Scholar 

  20. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)

    Google Scholar 

  21. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_56

    Chapter  Google Scholar 

  22. Merras, M., Saaidi, A., El Akkad, N., Satori, K.: Multi-view 3D reconstruction and modeling of the unknown 3D scenes using genetic algorithms. Soft Comput. (2017). https://doi.org/10.1007/s00500-017-2966-z

  23. El Hazzat, S., Merras, M., El Akkad, N., Saaidi, A., Satori, K.: 3D reconstruction system based on incremental structure from motion using a camera with varying parameters. Vis. Comput. (2017). https://doi.org/10.1007/s00371-017-1451-0

  24. El Akkad, N., Merras, M., Baataoui, A., Saaidi, A., Satori, K.: Camera self-calibration having the varying parameters and based on homography of the plane at infinity. Multimed. Tools Appl. (2017). https://doi.org/10.1007/s11042-017-5012-3

  25. El Akkad, N., El Hazzat, S., Saaidi, A., Satori, K.: Reconstruction of 3D scenes by camera self-calibration and using genetic algorithms. 3D Res. 7(6), 1–17 (2016)

    Google Scholar 

  26. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: 2011 IEEE International Conference on Computer Vision (ICCV). IEEE (2011)‏

    Google Scholar 

  27. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2012)‏

    Google Scholar 

  28. Rosin, P.L.: Measuring corner properties. Comput. Vis. Image Underst. 73(2), 291–307 (1999)

    Article  Google Scholar 

  29. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karima Karim , Nabil El Akkad or Khalid Satori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karim, K., El Akkad, N., Satori, K. (2018). Reconstruction of the 3D Scenes from the Matching Between Image Pair Taken by an Uncalibrated Camera. In: Tabii, Y., Lazaar, M., Al Achhab, M., Enneya, N. (eds) Big Data, Cloud and Applications. BDCA 2018. Communications in Computer and Information Science, vol 872. Springer, Cham. https://doi.org/10.1007/978-3-319-96292-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96292-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96291-7

  • Online ISBN: 978-3-319-96292-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics