Skip to main content

Active Automata Learning in Practice

An Annotated Bibliography of the Years 2011 to 2016

  • Chapter
  • First Online:
Machine Learning for Dynamic Software Analysis: Potentials and Limits

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11026))

Abstract

Active automata learning is slowly becoming a standard tool in the toolbox of the software engineer. As systems become ever more complex and development becomes more distributed, inferred models of system behavior become an increasingly valuable asset for understanding and analyzing a system’s behavior. Five years ago (in 2011) we have surveyed the then current state of active automata learning research and applications of active automata learning in practice. We predicted four major topics to be addressed in the then near future: efficiency, expressivity of models, bridging the semantic gap between formal languages and analyzed components, and solutions to the inherent problem of incompleteness of active learning in black-box scenarios. In this paper we review the progress that has been made over the past five years, assess the status of active automata learning techniques with respect to applications in the field of software engineering, and present an updated agenda for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We only provide a very brief sketch of the improved version of \(L^*\) due to Rivest and Schapire here [130]. A more detailed presentation can be found in Angluin’s original paper [13].

  2. 2.

    While the word \(w=\tilde{u}_0 \cdot v_{1}\) is a counterexample, \(\tilde{u}_m\) cannot be a counterexample (by construction of \(A_{Obs}\)), and all words \(\tilde{u}_i \cdot v_{i+1}\) with \(0 \le i \le m-1\) lead to the same state as \(\tilde{u}_m\) in \(A_{Obs}\). As a consequence, at one index \(\tilde{u}_{i-1} a_i \cdot v_{i+1} \in L\) and \(\tilde{u}_{i} \cdot v_{i+1} \not \in L\) (or vice versa).

  3. 3.

    https://learnlib.de/.

  4. 4.

    http://libalf.informatik.rwth-aachen.de/.

  5. 5.

    http://aide.codeplex.com/.

  6. 6.

    http://tomte.cs.ru.nl/.

  7. 7.

    https://github.com/lorisdanto/symbolicautomata.

  8. 8.

    https://bitbucket.org/learnlib/ralib/.

References

  1. Aadithya, K.V., Roychowdhury, J.: DAE2FSM: automatic generation of accurate discrete-time logical abstractions for continuous-time circuit dynamics. In: Proceedings of the 49th Annual Design Automation Conference, DAC 2012, pp. 311–316. ACM, New York (2012)

    Google Scholar 

  2. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.: Learning register automata with fresh value generation. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp. 165–183. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9_11

    Chapter  Google Scholar 

  3. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learning through counterexample guided abstraction refinement. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_4

    Chapter  Google Scholar 

  4. Aarts, F., Heidarian, F., Vaandrager, F.: A theory of history dependent abstractions for learning interface automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 240–255. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32940-1_18

    Chapter  MATH  Google Scholar 

  5. Aarts, F., Howar, F., Kuppens, H., Vaandrager, F.: Algorithms for inferring register automata. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8802, pp. 202–219. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45234-9_15

    Chapter  Google Scholar 

  6. Aarts, F., Jonsson, B., Uijen, J.: Generating models of infinite-state communication protocols using regular inference with abstraction. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16573-3_14

    Chapter  Google Scholar 

  7. Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.: Generating models of infinite-state communication protocols using regular inference with abstraction. Formal Methods Syst. Des. 46(1), 1–41 (2015)

    Article  Google Scholar 

  8. Aarts, F., Vaandrager, F.: Learning I/O automata. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4_6

    Chapter  Google Scholar 

  9. Abel, A., Reineke, J.: Gray-box learning of serial compositions of mealy machines. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 272–287. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40648-0_21

    Chapter  Google Scholar 

  10. Adamis, G., Kovács, G., Réthy, G.: Generating performance test model from conformance test logs. In: Fischer, J., Scheidgen, M., Schieferdecker, I., Reed, R. (eds.) SDL 2015. LNCS, vol. 9369, pp. 268–284. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24912-4_19

    Chapter  Google Scholar 

  11. Aichernig, B.K., Mostowski, W., Mousavi, M.R., Tappler, M., Taromirad, M.: Model learning and model-based testing. In: Bennaceur, A., Hähnle, R., Meinke, K. (eds.) ML for Dynamic Software Analysis. LNCS, vol. 11026, pp. 74–100. Springer, Cham (2018)

    Google Scholar 

  12. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 80–95. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45923-5_6

    Chapter  Google Scholar 

  13. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  Google Scholar 

  14. Angluin, D., Eisenstat, S., Fisman, D.: Learning regular languages via alternating automata. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI 2015, pp. 3308–3314. AAAI Press (2015)

    Google Scholar 

  15. Argyros, G., Stais, I., Jana, S., Keromytis, A.D., Kiayias, A.: SFADiff: automated evasion attacks and fingerprinting using black-box differential automata learning. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, pp. 1690–1701. ACM, New York (2016)

    Google Scholar 

  16. Bainczyk, A., Schieweck, A., Isberner, M., Margaria, T., Neubauer, J., Steffen, B.: ALEX: mixed-mode learning of web applications at ease. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 655–671. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3_51

    Chapter  Google Scholar 

  17. Balcázar, J.L., Díaz, J., Gavaldà, R., Watanabe, O.: Algorithms for learning finite automata from queries: a unified view. In: Du, D.Z., Ko, K.I. (eds.) Advances in Algorithms, Languages, and Complexity, pp. 53–72. Springer, Boston (1997). https://doi.org/10.1007/978-1-4613-3394-4_2

    Chapter  MATH  Google Scholar 

  18. Barowy, D.W., Gulwani, S., Hart, T., Zorn, B.: FlashRelate: extracting relational data from semi-structured spreadsheets using examples. SIGPLAN Not. 50(6), 218–228 (2015)

    Article  Google Scholar 

  19. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the correspondence between conformance testing and regular inference. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31984-9_14

    Chapter  Google Scholar 

  20. Bertolino, A., Calabrò, A., Merten, M., Steffen, B.: Never-stop learning: continuous validation of learned models for evolving systems through monitoring. ERCIM News 2012(88), 28–29 (2012)

    Google Scholar 

  21. Björklund, J., Fernau, H., Kasprzik, A.: Polynomial inference of universal automata from membership and equivalence queries. Inf. Comput. 246(C), 3–19 (2016)

    Article  MathSciNet  Google Scholar 

  22. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M.: Replaying play in and play out: synthesis of design models from scenarios by learning. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 435–450. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_33

    Chapter  MATH  Google Scholar 

  23. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M.: Smyle: a tool for synthesizing distributed models from scenarios by learning. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 162–166. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9_15

    Chapter  Google Scholar 

  24. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: Libalf: the automata learning framework. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_32

    Chapter  Google Scholar 

  25. van den Bos, P., Smetsers, R., Vaandrager, F.: Enhancing automata learning by log-based metrics. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 295–310. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0_19

    Chapter  Google Scholar 

  26. Botinčan, M., Babić, D.: Sigma*: symbolic learning of input-output specifications. In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2013, pp. 443–456. ACM, New York (2013)

    Google Scholar 

  27. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005). https://doi.org/10.1007/b137241

    Book  MATH  Google Scholar 

  28. Case, J., Jain, S., Le, T.D., Ong, Y.S., Semukhin, P., Stephan, F.: Automatic learning of subclasses of pattern languages. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 192–203. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21254-3_14

    Chapter  Google Scholar 

  29. Case, J., Jain, S., Ong, Y.S., Semukhin, P., Stephan, F.: Automatic learners with feedback queries. In: Löwe, B., Normann, D., Soskov, I., Soskova, A. (eds.) CiE 2011. LNCS, vol. 6735, pp. 31–40. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21875-0_4

    Chapter  Google Scholar 

  30. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Extending automata learning to extended finite state machines. In: Bennaceur, A., Hahnle, R., Meinke, K. (eds.) ML for Dynamic Software Analysis. LNCS, vol. 11026, pp. 149–177. Springer, Cham (2018)

    Google Scholar 

  31. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite state machines. Formal Asp. Comput. 28(2), 233–263 (2016)

    Article  MathSciNet  Google Scholar 

  32. Cassel, S., Jonsson, B., Howar, F., Steffen, B.: A succinct canonical register automaton model for data domains with binary relations. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 57–71. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-6_6

    Chapter  MATH  Google Scholar 

  33. Chaki, S., Gurfinkel, A.: Automated assume-guarantee reasoning for omega-regular systems and specifications. Innov. Syst. Softw. Eng. 7(2), 131–139 (2011)

    Article  Google Scholar 

  34. Chalupar, G., Peherstorfer, S., Poll, E., De Ruiter, J.: Automated reverse engineering using lego®. In: Proceedings of the 8th USENIX Conference on Offensive Technologies, WOOT 2014, p. 9. USENIX Association, Berkeley (2014)

    Google Scholar 

  35. Chen, Y.F., Hsieh, C., Lengál, O., Lii, T.J., Tsai, M.H., Wang, B.Y., Wang, F.: PAC learning-based verification and model synthesis. In: Proceedings of the 38th International Conference on Software Engineering, ICSE 2016, pp. 714–724. ACM, New York (2016)

    Google Scholar 

  36. Chen, Y.-F., Wang, B.-Y.: Learning Boolean functions incrementally. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 55–70. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_10

    Chapter  Google Scholar 

  37. Cheng, C.-H., et al.: Algorithms for synthesizing priorities in component-based systems. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 150–167. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1_12

    Chapter  Google Scholar 

  38. Cho, C.Y., Babić, D., Poosankam, P., Chen, K.Z., Wu, E.X., Song, D.: MACE: model-inference-assisted concolic exploration for protocol and vulnerability discovery. In: Proceedings of the 20th USENIX Conference on Security, SEC 2011, p. 10. USENIX Association, Berkeley (2011)

    Google Scholar 

  39. Choi, W.: Automated testing of graphical user interfaces: a new algorithm and challenges. In: Proceedings of the 2013 ACM Workshop on Mobile Development Lifecycle, MobileDeLi 2013, pp. 27–28. ACM, New York (2013)

    Google Scholar 

  40. Choi, W., Necula, G., Sen, K.: Guided GUI testing of android apps with minimal restart and approximate learning. SIGPLAN Not. 48(10), 623–640 (2013)

    Article  Google Scholar 

  41. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. Softw. Eng. 4(3), 178–187 (1978)

    Article  Google Scholar 

  42. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (1999)

    Google Scholar 

  43. Cobleigh, J.M., Giannakopoulou, D., PĂsĂreanu, C.S.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X_24

    Chapter  MATH  Google Scholar 

  44. Combe, D., de la Higuera, C., Janodet, J.-C.: Zulu: an interactive learning competition. In: Yli-Jyrä, A., Kornai, A., Sakarovitch, J., Watson, B. (eds.) FSMNLP 2009. LNCS (LNAI), vol. 6062, pp. 139–146. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14684-8_15

    Chapter  Google Scholar 

  45. Combéfis, S., Giannakopoulou, D., Pecheur, C., Feary, M.: Learning system abstractions for human operators. In: Proceedings of the International Workshop on Machine Learning Technologies in Software Engineering, MALETS 2011, pp. 3–10. ACM, New York (2011)

    Google Scholar 

  46. De Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In: Proceedings of the 24th USENIX Conference on Security Symposium, SEC 2015, pp. 193–206. USENIX Association, Berkeley (2015)

    Google Scholar 

  47. Decker, N., Habermehl, P., Leucker, M., Thoma, D.: Learning transparent data automata. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 130–149. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5_8

    Chapter  Google Scholar 

  48. Denis, F., Lemay, A., Terlutte, A.: Residual finite state automata. Fundam. Informaticae 51(4), 339–368 (2002)

    MathSciNet  MATH  Google Scholar 

  49. Dinca, I., Ipate, F., Mierla, L., Stefanescu, A.: Learn and test for event-B – A rodin plugin. In: Derrick, J., et al. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 361–364. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30885-7_32

    Chapter  Google Scholar 

  50. Dinca, I., Ipate, F., Stefanescu, A.: Model learning and test generation for event-B decomposition. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 539–553. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0_40

    Chapter  Google Scholar 

  51. Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 173–189. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_10

    Chapter  Google Scholar 

  52. Esparza, J., Leucker, M., Schlund, M.: Learning workflow petri nets. Fundam. Informaticae 113(3–4), 205–228 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Feng, L., Han, T., Kwiatkowska, M., Parker, D.: Learning-based compositional verification for synchronous probabilistic systems. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 511–521. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1_40

    Chapter  MATH  Google Scholar 

  54. Feng, L., Kwiatkowska, M., Parker, D.: Automated learning of probabilistic assumptions for compositional reasoning. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 2–17. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19811-3_2

    Chapter  Google Scholar 

  55. Fiterău-Broştean, P., Howar, F.: Learning-based testing the sliding window behavior of TCP implementations. In: Petrucci, L., Seceleanu, C., Cavalcanti, A. (eds.) FMICS/AVoCS -2017. LNCS, vol. 10471, pp. 185–200. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67113-0_12

    Chapter  Google Scholar 

  56. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_25

    Chapter  Google Scholar 

  57. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test selection based on finite state models. IEEE Trans. Softw. Eng. 17(6), 591–603 (1991)

    Article  Google Scholar 

  58. García, P., López, D., De Parga, M.V.: Polynomial characteristic sets for DFA identification. Theor. Comput. Sci. 448, 41–46 (2012)

    Article  MathSciNet  Google Scholar 

  59. Garg, P., Löding, C., Madhusudan, P., Neider, D.: Learning universally quantified invariants of linear data structures. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 813–829. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_57

    Chapter  Google Scholar 

  60. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust framework for learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 69–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_5

    Chapter  Google Scholar 

  61. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision trees and implication counterexamples. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, pp. 499–512. ACM, New York (2016)

    Google Scholar 

  62. Giannakopoulou, D., Rakamarić, Z., Raman, V.: Symbolic learning of component interfaces. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 248–264. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33125-1_18

    Chapter  Google Scholar 

  63. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)

    Article  MathSciNet  Google Scholar 

  64. Groz, R., Irfan, M.-N., Oriat, C.: Algorithmic improvements on regular inference of software models and perspectives for security testing. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 444–457. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0_33

    Chapter  Google Scholar 

  65. Groz, R., Simao, A., Petrenko, A., Oriat, C.: Inferring FSM models of systems without reset. In: Bennaceur, A., Hahnle, R., Meinke, K. (eds.) ML for Dynamic Software Analysis. LNCS, vol. 11026, pp. 178–201. Springer, Cham (2018)

    Google Scholar 

  66. Groz, R., Simao, A., Petrenko, A., Oriat, C.: Inferring finite state machines without reset using state identification sequences. In: El-Fakih, K., Barlas, G., Yevtushenko, N. (eds.) ICTSS 2015. LNCS, vol. 9447, pp. 161–177. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25945-1_10

    Chapter  Google Scholar 

  67. Gu, C., Roychowdhury, J.: FSM model abstraction for analog/mixed-signal circuits by learning from I/O trajectories. In: Proceedings of the 16th Asia and South Pacific Design Automation Conference, ASPDAC 2011, pp. 7–12. IEEE Press, Piscataway (2011)

    Google Scholar 

  68. Gulwani, S.: Automating string processing in spreadsheets using input-output examples. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, pp. 317–330. ACM, New York (2011)

    Google Scholar 

  69. Hagerer, A., Margaria, T., Niese, O., Steffen, B., Brune, G., Ide, H.D.: Efficient regression testing of CTI-systems: testing a complex call-center solution. Ann. Rev. Commun. 55, 1033–1040 (2001)

    Google Scholar 

  70. Hähnle, R., Steffen, B.: Constraint-based behavioral consistency of evolving software systems. In: Bennaceur, A., Hahnle, R., Meinke, K. (eds.) ML for Dynamic Software Analysis. LNCS, vol. 11026, pp. 205–218. Springer, Cham (2018)

    Google Scholar 

  71. Hungar, H., Steffen, B.: Behavior-based model construction. Int. J. Softw. Tools Technol. Transf. 6(1), 4–14 (2004)

    Article  Google Scholar 

  72. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learning. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_31

    Chapter  Google Scholar 

  73. He, F., Gao, X., Wang, M., Wang, B.Y., Zhang, L.: Learning weighted assumptions for compositional verification of Markov decision processes. ACM Trans. Softw. Eng. Methodol. 25(3), 21:1–21:39 (2016)

    Article  Google Scholar 

  74. He, F., Wang, B.Y., Yin, L., Zhu, L.: Symbolic assume-guarantee reasoning through BDD learning. In: Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, pp. 1071–1082. ACM, New York (2014)

    Google Scholar 

  75. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969)

    Article  Google Scholar 

  76. Högberg, J.: A randomised inference algorithm for regular tree languages. Nat. Lang. Eng. 17(2), 203–219 (2011)

    Article  Google Scholar 

  77. Howar, F., Bauer, O., Merten, M., Steffen, B., Margaria, T.: The teachers’ crowd: the impact of distributed oracles on active automata learning. In: Hähnle, R., Knoop, J., Margaria, T., Schreiner, D., Steffen, B. (eds.) ISoLA 2011. CCIS, pp. 232–247. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34781-8_18

    Chapter  Google Scholar 

  78. Howar, F., Giannakopoulou, D., Rakamarić, Z.: Hybrid learning: interface generation through static, dynamic, and symbolic analysis. In: Proceedings of the 2013 International Symposium on Software Testing and Analysis, ISSTA 2013, pp. 268–279. ACM, New York (2013)

    Google Scholar 

  79. Howar, F., Isberner, M., Steffen, B., Bauer, O., Jonsson, B.: Inferring semantic interfaces of data structures. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 554–571. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0_41

    Chapter  Google Scholar 

  80. Howar, F., Margaria, T., Wagner, C.: Simplifying translation validation via model extrapolation. J. Integr. Des. Process Sci. 17(3), 71–91 (2013)

    Google Scholar 

  81. Howar, F., Merten, M., Steffen, B., Margaria, T.: Practical aspects of active automata learning, pp. 235–267. John Wiley and Sons, Inc. (2012)

    Google Scholar 

  82. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9_17

    Chapter  Google Scholar 

  83. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 687–704. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-0_55

    Chapter  Google Scholar 

  84. Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_19

    Chapter  Google Scholar 

  85. Hrnčič, D., Mernik, M., Bryant, B.R., Javed, F.: A memetic grammar inference algorithm for language learning. Appl. Soft Comput. 12(3), 1006–1020 (2012)

    Article  Google Scholar 

  86. Hungar, H., Margaria, T., Steffen, B.: Test-based model generation for legacy systems. In: 2003 Proceedings of the International Test Conference, ITC 2003, vol. 1, pp. 971–980, 30 September–2 October 2003

    Google Scholar 

  87. Ipate, F.: Learning finite cover automata from queries. J. Comput. Syst. Sci. 78(1), 221–244 (2012)

    Article  MathSciNet  Google Scholar 

  88. Isberner, M.: Foundations of active automata learning: an algorithmic perspective. Ph.D. thesis (2015)

    Google Scholar 

  89. Isberner, M., Howar, F., Steffen, B.: Inferring automata with state-local alphabet abstractions. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 124–138. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-4_9

    Chapter  Google Scholar 

  90. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_26

    Chapter  Google Scholar 

  91. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_32

    Chapter  Google Scholar 

  92. Jain, S., Luo, Q., Stephan, F.: Learnability of automatic classes. J. Comput. Syst. Sci. 78(6), 1910–1927 (2012)

    Article  MathSciNet  Google Scholar 

  93. Jain, S., Martin, E., Stephan, F.: Robust learning of automatic classes of languages. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS (LNAI), vol. 6925, pp. 55–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24412-4_8

    Chapter  MATH  Google Scholar 

  94. Jung, Y., Lee, W., Wang, B.-Y., Yi, K.: Predicate generation for learning-based quantifier-free loop invariant inference. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 205–219. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_17

    Chapter  Google Scholar 

  95. Kasprzik, A.: Inference of residual finite-state tree automata from membership queries and finite positive data. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 476–477. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22321-1_45

    Chapter  Google Scholar 

  96. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)

    Google Scholar 

  97. Khalili, A., Natale, L., Tacchella, A.: Reverse engineering of middleware for verification of robot control architectures. In: Brugali, D., Broenink, J.F., Kroeger, T., MacDonald, B.A. (eds.) SIMPAR 2014. LNCS (LNAI), vol. 8810, pp. 315–326. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11900-7_27

    Chapter  Google Scholar 

  98. Khalili, A., Tacchella, A.: Learning nondeterministic mealy machines. In: Proceedings of the 12th International Conference on Grammatical Inference, ICGI 2014, Kyoto, Japan, 17–19 September 2014, pp. 109–123 (2014)

    Google Scholar 

  99. Komuravelli, A., Pasareanu, C.S., Clarke, E.M.: Learning probabilistic systems from tree samples. In: Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer Science, LICS 2012, pp. 441–450. IEEE Computer Society, Washington, DC (2012)

    Google Scholar 

  100. Konev, B., Lutz, C., Ozaki, A., Wolter, F.: Exact learning of lightweight description logic ontologies. In: Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning, KR 2014, pp. 298–307. AAAI Press (2014)

    Google Scholar 

  101. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification for probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 23–37. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_3

    Chapter  MATH  Google Scholar 

  102. Leucker, M., Neider, D.: Learning minimal deterministic automata from inexperienced teachers. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 524–538. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0_39

    Chapter  Google Scholar 

  103. Lin, S.-W., André, É., Dong, J.S., Sun, J., Liu, Y.: An efficient algorithm for learning event-recording automata. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 463–472. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1_35

    Chapter  Google Scholar 

  104. Lin, S.-W., Hsiung, P.-A.: Compositional synthesis of concurrent systems through causal model checking and learning. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 416–431. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9_29

    Chapter  Google Scholar 

  105. Maler, O., Mens, I.-E.: A generic algorithm for learning symbolic automata from membership queries. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 146–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9_8

    Chapter  Google Scholar 

  106. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning deterministic probabilistic automata from a model checking perspective. Mach. Learn. 105(2), 255–299 (2016)

    Article  MathSciNet  Google Scholar 

  107. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model generation for legacy reactive systems. In: 2004 Ninth IEEE International Proceedings of the High-Level Design Validation and Test Workshop, HLDVT 2004, pp. 95–100. IEEE Computer Society, Washington, DC (2004)

    Google Scholar 

  108. Medhat, R., Ramesh, S., Bonakdarpour, B., Fischmeister, S.: A framework for mining hybrid automata from input/output traces. In: Proceedings of the 12th International Conference on Embedded Software, EMSOFT 2015, pp. 177–186. IEEE Press, Piscataway (2015)

    Google Scholar 

  109. Meinke, K.: Learning-based testing: recent progress and future prospects. In: Bennaceur, A., Hahnle, R., Meinke, K. (eds.) ML for Dynamic Software Analysis. LNCS, vol. 11026, pp. 53–73. Springer, Cham (2018)

    Google Scholar 

  110. Meinke, K., Sindhu, M.A.: Incremental learning-based testing for reactive systems. In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 134–151. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21768-5_11

    Chapter  Google Scholar 

  111. Meinke, K., Sindhu, M.A.: LBTest: a learning-based testing tool for reactive systems. In: Sixth IEEE International Conference on Software Testing, Verification and Validation, ICST 2013, Luxembourg, 18–22 March 2013, pp. 447–454 (2013)

    Google Scholar 

  112. Meller, Y., Grumberg, O., Yorav, K.: Learning-based compositional model checking of behavioral UML systems. In: Braga, C., Ölveczky, P.C. (eds.) FACS 2015. LNCS, vol. 9539, pp. 275–293. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28934-2_15

    Chapter  Google Scholar 

  113. Mens, I., Maler, O.: Learning regular languages over large ordered alphabets. Log. Methods Comput. Sci. 11(3), 1–22 (2015)

    Article  MathSciNet  Google Scholar 

  114. Merten, M., Howar, F., Steffen, B., Cassel, S., Jonsson, B.: Demonstrating learning of register automata. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 466–471. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_32

    Chapter  MATH  Google Scholar 

  115. Merten, M., Howar, F., Steffen, B., Pellicione, P., Tivoli, M.: Automated inference of models for black box systems based on interface descriptions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 79–96. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0_7

    Chapter  Google Scholar 

  116. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation LearnLib. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_18

    Chapter  Google Scholar 

  117. Shahbaz, M., Li, K., Groz, R.: Learning and integration of parameterized components through testing. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) FATES/TestCom -2007. LNCS, vol. 4581, pp. 319–334. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73066-8_22

    Chapter  Google Scholar 

  118. Neider, D.: Small strategies for safety games. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 306–320. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1_22

    Chapter  MATH  Google Scholar 

  119. Neider, D., Topcu, U.: An automaton learning approach to solving safety games over infinite graphs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 204–221. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_12

    Chapter  Google Scholar 

  120. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9(4), 541–544 (1958)

    Article  MathSciNet  Google Scholar 

  121. Neubauer, J., Steffen, B., Bauer, O., Windmüller, S., Merten, M., Margaria, T., Howar, F.: Automated continuous quality assurance. In: Proceedings of the First International Workshop on Formal Methods in Software Engineering: Rigorous and Agile Approaches, FormSERA 2012, pp. 37–43. IEEE Press, Piscataway (2012)

    Google Scholar 

  122. Neubauer, J., Windmüller, S., Steffen, B.: Risk-based testing via active continuous quality control. Int. J. Softw. Tools Technol. Transf. 16(5), 569–591 (2014)

    Article  Google Scholar 

  123. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput. 118(2), 316–326 (1995)

    Article  MathSciNet  Google Scholar 

  124. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006). https://doi.org/10.1007/11817949_29

    Chapter  Google Scholar 

  125. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer, H.: Learning to divide and conquer: applying the L* algorithm to automate assume-guarantee reasoning. Formal Methods Syst. Des. 32(3), 175–205 (2008)

    Article  Google Scholar 

  126. Popper, K.: The Logic of Scientific Discovery. Classics Series. Routledge, Abingdon (2002)

    MATH  Google Scholar 

  127. Raffelt, H., Margaria, T., Steffen, B., Merten, M.: Hybrid test of web applications with webtest. In: Proceedings of the 2008 Workshop on Testing, Analysis, and Verification of Web Services and Applications, TAV-WEB 2008, pp. 1–7. ACM, New York (2008)

    Google Scholar 

  128. Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata learning. Int. J. Softw. Tools Technol. Transf. 11(4), 307–324 (2009)

    Article  Google Scholar 

  129. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrapolating behavioral models. Int. J. Softw. Tools Technol. Transf. 11(5), 393–407 (2009)

    Article  Google Scholar 

  130. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Inf. Comput. 103(2), 299–347 (1993)

    Article  MathSciNet  Google Scholar 

  131. Schuts, M., Hooman, J., Vaandrager, F.: Refactoring of legacy software using model learning and equivalence checking: an industrial experience report. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 311–325. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0_20

    Chapter  Google Scholar 

  132. Shahbaz, M., Groz, R.: Inferring mealy machines. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3_14

    Chapter  Google Scholar 

  133. Shahbaz, M., Groz, R.: Analysis and testing of black-box component-based systems by inferring partial models. Softw. Test. Verif. Reliab. 24(4), 253–288 (2014)

    Article  Google Scholar 

  134. Cassel, S., Howar, F., Jonsson, B.: RALib: a LearnLib extension for inferring EFSMs. In: DIFTS 2015 at FMCAD 2015 (2015)

    Google Scholar 

  135. Staworko, S., Wieczorek, P.: Learning twig and path queries. In: Proceedings of the 15th International Conference on Database Theory, ICDT 2012, pp. 140–154. ACM, New York (2012)

    Google Scholar 

  136. Sun, J., Xiao, H., Liu, Y., Lin, S.W., Qin, S.: TLV: abstraction through testing, learning, and validation. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pp. 698–709. ACM, New York (2015)

    Google Scholar 

  137. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines with parameters. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 107–121. Springer, Heidelberg (2006). https://doi.org/10.1007/11693017_10

    Chapter  Google Scholar 

  138. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines using domains with equality tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 317–331. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78743-3_24

    Chapter  Google Scholar 

  139. Bohlin, T., Jonsson, B.: Regular inference for communication protocol entities. Technical report. Department of Information Technology, Uppsala University, Schweden (2009)

    Google Scholar 

  140. Margaria, T., Raffelt, H., Steffen, B.: Knowledge-based relevance filtering for efficient system-level test-based model generation. Innov. Syst. Softw. Eng. 1(2), 147–156 (2005)

    Article  Google Scholar 

  141. Volpato, M., Tretmans, J.: Active learning of nondeterministic systems from an ioco perspective. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8802, pp. 220–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45234-9_16

    Chapter  Google Scholar 

  142. Walkinshaw, N.: Assessing test adequacy for black-box systems without specifications. In: Wolff, B., Zaïdi, F. (eds.) ICTSS 2011. LNCS, vol. 7019, pp. 209–224. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24580-0_15

    Chapter  Google Scholar 

  143. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring extended finite state machine models from software executions. Empirical Softw. Engg. 21(3), 811–853 (2016)

    Article  Google Scholar 

  144. Wang, X., Gulwani, S., Singh, R.: FIDEX: filtering spreadsheet data using examples. In: Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, pp. 195–213. ACM, New York (2016)

    Google Scholar 

  145. Windmüller, S., Neubauer, J., Steffen, B., Howar, F., Bauer, O.: Active continuous quality control. In: Proceedings of the 16th International ACM Sigsoft Symposium on Component-Based Software Engineering, CBSE 2013, pp. 111–120. ACM, New York (2013)

    Google Scholar 

  146. Xue, Y., Wang, J., Liu, Y., Xiao, H., Sun, J., Chandramohan, M.: Detection and classification of malicious JavaScript via attack behavior modelling. In: Proceedings of the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015, pp. 48–59. ACM, New York (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk Howar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Howar, F., Steffen, B. (2018). Active Automata Learning in Practice. In: Bennaceur, A., Hähnle, R., Meinke, K. (eds) Machine Learning for Dynamic Software Analysis: Potentials and Limits. Lecture Notes in Computer Science(), vol 11026. Springer, Cham. https://doi.org/10.1007/978-3-319-96562-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96562-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96561-1

  • Online ISBN: 978-3-319-96562-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics