Skip to main content

Constraint-Based Behavioral Consistency of Evolving Software Systems

  • Chapter
  • First Online:
Machine Learning for Dynamic Software Analysis: Potentials and Limits

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11026))

Abstract

Any complex software system exhibits a tension between the technical perspective required for its realization and the user-level perspective. We term this the “how-what gap”, represented by the questions “how is a system implemented” vs. “what is its functionality/usage”. The normative, anticipated behavior of a software system as envisaged during its development and the de facto, observed behavior emerging after its continued operation tends to drift apart, resulting in behavioral inconsistency. We discuss how behavioral consistency in software systems can be captured in technical and formal terms, we sketch a possible tool chain that could support it, and we describe some of the research challenges that must be solved. Our main idea is to combine software analysis approaches represented by various forms of static analysis and formal verification with runtime verification, monitoring, and automata learning in order to optimally leverage the de facto observed behaviour of the deployed systems.

The research reported in this article has been partially supported by Deutsche Forschungsgemeinschaft (DFG) under grant nr. HA 2617/7-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.abs-models.org.

  2. 2.

    www.compugene.tu-darmstadt.de/compugene/welcome.

References

  1. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learning through counterexample guided abstraction refinement. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_4

    Chapter  Google Scholar 

  2. Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.W.: Generating models of infinite-state communication protocols using regular inference with abstraction. Formal Methods Syst. Des. 46(1), 1–41 (2015)

    Article  Google Scholar 

  3. Abrial, J.-R.: The B Book: Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  4. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P., Ulbrich, M. (eds.): Deductive Software Verification-The KeY Book: From Theory to Practice. LNCS, vol. 10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

    Book  Google Scholar 

  5. Ahrendt, W., Chimento, J.M., Pace, G.J., Schneider, G.: Verifying data- and control-oriented properties combining static and runtime verification: theory and tools. Formal Methods Syst. Des. 51(1), 200–265 (2017)

    Article  Google Scholar 

  6. Ahrendt, W., Gladisch, C., Herda, M.: Proof-based test case generation. In: Ahrendt et al. [4], chap. 12, pp. 415–451

    Google Scholar 

  7. Albert, E., et al.: SACO: static analyzer for concurrent objects. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 562–567. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_46

    Chapter  Google Scholar 

  8. Albert, E., Bubel, R., Genaim, S., Hähnle, R., Díez, G.R.: A formal verification framework for static analysis—as well as its instantiation to the resource analyzer COSTA and formal verification tool KeY. Softw. Syst. Model. 15(4), 987–1012 (2016)

    Article  Google Scholar 

  9. Albert, E., de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Tarifa, S.L.T., Wong, P.Y.H.: Formal modeling of resource management for cloud architectures: an industrial case study using real-time ABS. J. Serv.-Oriented Comput. Appl. 8(4), 323–339 (2014)

    Article  Google Scholar 

  10. Albert, E., Gómez-Zamalloa, M., Isabel, M.: SYCO: a systematic testing tool for concurrent objects. In: Zaks, A., Hermenegildo, M.V. (eds.) Proceedings of the 25th International Conference on Compiler Construction, CC, Barcelona, Spain, pp. 269–270. ACM (2016)

    Google Scholar 

  11. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  Google Scholar 

  12. Beckert, B., Klebanov, V., Weiß, B.: Dynamic logic for Java. In: Ahrendt et al. [4], chapt. 3, pp. 49–106

    Google Scholar 

  13. Bertolino, A., Calabrò, A., Merten, M., Steffen, B.: Never-stop learning: continuous validation of learned models for evolving systems through monitoring. ERCIM News 2012(88), 28–29 (2012)

    Google Scholar 

  14. Bubel, R., Montoya, A.F., Hähnle, R.: Analysis of executable software models. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM 2014. LNCS, vol. 8483, pp. 1–25. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07317-0_1

    Chapter  MATH  Google Scholar 

  15. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Learning extended finite state machines. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 250–264. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10431-7_18

    Chapter  Google Scholar 

  16. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Extending automata learning to extended finite state machine. In: Bennaceur, A., Hähnle, R., Meinke, K. (eds.) ML for Dynamic Software Analysis. LNCS, vol. 11026, pp. 149–177. Springer, Cham (2018)

    Google Scholar 

  17. Chimento, J.M., Ahrendt, W., Pace, G.J., Schneider, G.: StaRVOOrS : a tool for combined static and runtime verification of Java. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 297–305. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3_21

    Chapter  MATH  Google Scholar 

  18. Cok, D.R., Griggio, A., Bruttomesso, R., Deters, M.: The 2012 SMT competition. In: Fontaine, P., Goel, A. (eds.) 10th International Workshop on Satisfiability Modulo Theories, SMT, Manchester, UK, EPiC Series in Computing, vol. 20, pp. 131–142. EasyChair (2013)

    Google Scholar 

  19. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s Java.utils.collection.sort() is broken: the good, the bad and the worst case. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 273–289. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_16

    Chapter  Google Scholar 

  20. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 517–526. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_35

    Chapter  Google Scholar 

  21. Do, Q.H., Bubel, R., Hähnle, R.: Exploit generation for information flow leaks in object-oriented programs. In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IAICT, vol. 455, pp. 401–415. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18467-8_27

    Chapter  Google Scholar 

  22. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 169–188. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73770-4_10

    Chapter  MATH  Google Scholar 

  23. Felderer, M., Ramler, R.: A multiple case study on risk-based testing in industry. Int. J. Softw. Tools Technol. Transf. 16(5), 609–625 (2014)

    Article  Google Scholar 

  24. Giachino, E., Laneve, C., Lienhardt, M.: A framework for deadlock detection in core ABS. Softw. Syst. Model. 15(4), 1013–1048 (2016)

    Article  Google Scholar 

  25. Glass, R.L.: Software Runaways: Monumental Software Disasters. Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  26. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 80–95. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45923-5_6

    Chapter  Google Scholar 

  27. Hähnle, R.: The abstract behavioral specification language: a tutorial introduction. In: Giachino, E., Hähnle, R., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2012. LNCS, vol. 7866, pp. 1–37. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40615-7_1

    Chapter  Google Scholar 

  28. Kamburjan, E., Hähnle, R.: Uniform modeling of railway operations. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2016. CCIS, vol. 694, pp. 55–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53946-1_4

    Chapter  Google Scholar 

  29. Hentschel, M., Bubel, R., Hähnle, R.: Symbolic execution debugger (SED). In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 255–262. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_21

    Chapter  Google Scholar 

  30. Howar, F., Steffen, B.: Active automata learning in practice: an annotated bibliography of the years 2011 to 2016. In: Bennaceur, A., Hähnle, R., Meinke, K. (eds.) ML for Dynamic Software Analysis. LNCS, vol. 11026, pp. 123–148. Springer, Cham (2018)

    Google Scholar 

  31. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9_17

    Chapter  Google Scholar 

  32. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 687–704. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-0_55

    Chapter  Google Scholar 

  33. Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_19

    Chapter  Google Scholar 

  34. Isberner, M.: Foundations of active automata learning: an algorithmic perspective. Ph.D. thesis, TU Dortmund University (2015)

    Google Scholar 

  35. Isberner, M., Howar, F., Steffen, B.: Inferring automata with state-local alphabet abstractions. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 124–138. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-4_9

    Chapter  Google Scholar 

  36. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages to program structures. Mach. Learn. 96(1–2), 65–98 (2014)

    Article  MathSciNet  Google Scholar 

  37. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_26

    Chapter  Google Scholar 

  38. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_32

    Chapter  Google Scholar 

  39. Isberner, M., Steffen, B.: An abstract framework for counterexample analysis in active automata learning. In: Proceedings of the 12th International Conference on Grammatical Inference, volume 34 of JMLR Workshop & Conference Proceedings, pp. 79–93 (2014)

    Google Scholar 

  40. Jabbari, R., Bin Ali, N., Petersen, K., Tanveer, B.: What is DevOps? A systematic mapping study on definitions and practices. In: Proceedings of the Scientific Workshops of XP 2016, Edinburgh, Scotland, UK, p. 12. ACM (2016)

    Google Scholar 

  41. Ji, R., Hähnle, R., Bubel, R.: Program transformation based on symbolic execution and deduction. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 289–304. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40561-7_20

    Chapter  Google Scholar 

  42. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_8

    Chapter  Google Scholar 

  43. Jonsson, B.: Learning of automata models extended with data. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 327–349. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-4_10

    Chapter  Google Scholar 

  44. Gauch Jr., H.G.: Scientific Method in Practice. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  45. Kovács, L.: Symbolic computation and automated reasoning for program analysis. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 20–27. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0_2

    Chapter  Google Scholar 

  46. Margaria, T., Steffen, B.: Business process modelling in the jABC: the one-thing-approach. In: Handbook of Research on Business Process Modeling, IGI Global (2009)

    Google Scholar 

  47. Margaria, T., Steffen, B.: Service-orientation: conquering complexity with XMDD. In: Hinchey, M., Coyle, L. (eds.) Conquering Complexity, pp. 217–236. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2297-5_10

    Chapter  Google Scholar 

  48. Maurer, A.: Ockham’s razor and dialectical reasoning. Pontifical Institute of Mediaeval Studies (1996)

    Google Scholar 

  49. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation LearnLib. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_18

    Chapter  Google Scholar 

  50. Neubauer, J., Windmüller, S., Steffen, B.: Risk-based testing via active continuous quality control. Int. J. Softw. Tools Technol. Transf. 16(5), 569–591 (2014)

    Article  Google Scholar 

  51. Pérez, J.F., Wang, W., Casale, G.: Towards a DevOps approach for software quality engineering. In: Proceedings of Workshop on Challenges in Performance Methods for Software Development, WOSP-C 2015, Austin, TX, USA, pp. 5–10. ACM (2015)

    Google Scholar 

  52. Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 422–436. Springer, Heidelberg (2006). https://doi.org/10.1007/11916277_29

    Chapter  MATH  Google Scholar 

  53. Scheben, C., Greiner, S.: Information flow analysis. In: Ahrendt et al. [4], chap. 13, pp. 453–472

    Google Scholar 

  54. Steffen, B.: Unifying models. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 1–20. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023444

    Chapter  Google Scholar 

  55. Steffen, B., Margaria, T., Claßen, A., Braun, V.: Incremental formalization: a key to industrial success. Softw. Concepts Tools 17(2), 78–95 (1996)

    Google Scholar 

  56. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-driven development with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383, pp. 92–108. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70889-6_7

    Chapter  Google Scholar 

  57. Steffen, B., Rüthing, O.: Quality engineering: leveraging heterogeneous information. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 23–37. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_4

    Chapter  Google Scholar 

  58. Sutcliffe, G., Urban, J.: The CADE-25 automated theorem proving system competition: CASC-25. AI Commun. 29(3), 423–433 (2016)

    Article  MathSciNet  Google Scholar 

  59. Wasser, N.: Generating specifications for recursive methods by abstracting program states. In: Li, X., Liu, Z., Yi, W. (eds.) SETTA 2015. LNCS, vol. 9409, pp. 243–257. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25942-0_16

    Chapter  Google Scholar 

  60. Windmüller, S., et al.: Active continuous quality control. In: 16th International ACM Sigsoft Symposium on Component-Based Software Engineering, Vancouver, Canada (2013)

    Google Scholar 

  61. Wong, P.Y.H., Albert, E., Muschevici, R., Proença, J., Schäfer, J., Schlatte, R.: The ABS tool suite: modelling, executing and analysing distributed adaptable object-oriented systems. STTT 14(5), 567–588 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Falk Howar and Karl Meinke and for their constructive criticism which helped to improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiner Hähnle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hähnle, R., Steffen, B. (2018). Constraint-Based Behavioral Consistency of Evolving Software Systems. In: Bennaceur, A., Hähnle, R., Meinke, K. (eds) Machine Learning for Dynamic Software Analysis: Potentials and Limits. Lecture Notes in Computer Science(), vol 11026. Springer, Cham. https://doi.org/10.1007/978-3-319-96562-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96562-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96561-1

  • Online ISBN: 978-3-319-96562-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics