Abstract
Historical graphs capture the evolution of graphs through time. A historical graph can be modeled as a sequence of graph snapshots, where each snapshot corresponds to the state of the graph at the corresponding time instant. There is rich information in the history of the graph not present in just the current snapshot of the graph. In this chapter, we present logical and physical models, query types, systems and algorithms for managing historical graphs. We also highlight promising directions for future work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, C.C., Subbian, K.: Evolutionary network analysis: a survey. ACM Comput. Surv. 47(1), 1–36 (2014)
Akiba, T., Iwata, Y., Yoshida, Y.: Dynamic and historical shortest-path distance queries on large evolving networks by pruned landmark labeling. In: 23rd International World Wide Web Conference, WWW 2014, Seoul, Republic of Korea, 7–11 April 2014, pp. 237–248 (2014)
Anagnostopoulos, A., Kumar, R., Mahdian, M., Upfal, E., Vandin, F.: Algorithms on evolving graphs. In: Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, 8–10 January 2012, pp. 149–160 (2012)
Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.: Foundations of modern query languages for graph databases. ACM Comput. Surv. 50(5), 68:1–68:40 (2017)
Böhlen, M.H., Busatto, R., Jensen, C.S.: Point-versus interval-based temporal data models. In: Proceedings of the Fourteenth International Conference on Data Engineering, Orlando, Florida, USA, 23–27 February 1998, pp. 192–200 (1998)
Böhlen, M.H., Dignös, A., Gamper, J., Jensen, C.S.: Temporal data management: an overview. In: Business Intelligence - 7th European Summer School, eBISS 2017, Brussels, Belgium, 2–7 July 2017. Tutorial Lectures (2017)
Cattuto, C., Quaggiotto, M., Panisson, A., Averbuch, A.: Time-varying social networks in a graph database: a Neo4j use case. In: First International Workshop on Graph Data Management Experiences and Systems, GRADES 2013, co-loated with SIGMOD/PODS 2013, New York, NY, USA, 24 June 2013, p. 11 (2013)
Cheng, R., Hong, J., Kyrola, A., Miao, Y., Weng, X., Wu, M., Yang, F., Zhou, L., Zhao, F., Chen, E.: Kineograph: taking the pulse of a fast-changing and connected world. In: European Conference on Computer Systems, Proceedings of the Seventh EuroSys Conference 2012, EuroSys 2012, Bern, Switzerland, 10–13 April 2012, pp. 85–98 (2012)
Durand, G.C., Pinnecke, M., Broneske, D., Saake, G.: Backlogs and interval timestamps: building blocks for supporting temporal queries in graph databases. In: Proceedings of the Workshops of the EDBT/ICDT 2017 Joint Conference (EDBT/ICDT 2017), Venice, Italy, 21–24 March 2017 (2017)
Fan, W., Hu, C., Tian, C.: Incremental graph computations: doable and undoable. In: Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, 14–19 May 2017, pp. 155–169 (2017)
Gelly: Documentation (2018). https://flink.apache.org/news/2015/08/24/introducing-flink-gelly.html. Accessed Jan 2018
Apache Giraph: Documentation (2018). http://giraph.apache.org/literature.html. Accessed Jan 2018
Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distributed graph-parallel computation on natural graphs. In: 10th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2012, Hollywood, CA, USA, 8–10 October 2012, pp. 17–30 (2012)
GraphX: Programming Guide (2018). https://spark.apache.org/docs/latest/graphx-programming-guide.html. Accessed Jan 2018
Han, W., Miao, Y., Li, K., Wu, M., Yang, F., Zhou, L., Prabhakaran, V., Chen, W., Chen, E.: Chronos: a graph engine for temporal graph analysis. In: Ninth Eurosys Conference 2014, EuroSys 2014, Amsterdam, The Netherlands, 13–16 April 2014, pp. 1:1–1:14 (2014)
Hayashi, T., Akiba, T., Kawarabayashi, K.: Fully dynamic shortest-path distance query acceleration on massive networks. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, 24–28 October 2016, pp. 1533–1542 (2016)
Huo, W., Tsotras, V.J.: Efficient temporal shortest path queries on evolving social graphs. In: Conference on Scientific and Statistical Database Management, SSDBM 2014, Aalborg, Denmark, 30 June–02 July 2014, pp. 38:1–38:4 (2014)
Padmanabha Iyer, A., Li, L.E., Das, T., Stoica, I.: Time-evolving graph processing at scale. In: Proceedings of the Fourth International Workshop on Graph Data Management Experiences and Systems, Redwood Shores, CA, USA, 24 June 2016, p. 5 (2016)
Jensen, C.S., Snodgrass, R.T.: Temporal data management. IEEE Trans. Knowl. Data Eng. 11(1), 36–44 (1999)
Ju, X., Williams, D., Jamjoom, H., Shin, K.G.: Version traveler: fast and memory-efficient version switching in graph processing systems. In: 2016 USENIX Annual Technical Conference, USENIX ATC 2016, Denver, CO, USA, 22–24 June 2016, pp. 523–536 (2016)
Junghanns, M., Petermann, A., Neumann, M., Rahm, E.: Management and analysis of big graph data: current systems and open challenges. In: Zomaya, A., Sakr, S. (eds.) Handbook of Big Data Technologies, pp. 457–505. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49340-4_14
Kalavri, V., Vlassov, V., Haridi, S.: High-level programming abstractions for distributed graph processing. IEEE Trans. Knowl. Data Eng. 30(2), 305–324 (2018)
Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: a peta-scale graph mining system. In: ICDM 2009, The Ninth IEEE International Conference on Data Mining, Miami, Florida, USA, 6–9 December 2009, pp. 229–238 (2009)
Khurana, U., Deshpande, A.: Efficient snapshot retrieval over historical graph data. In: 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, 8–12 April 2013, pp. 997–1008 (2013)
Khurana, U., Deshpande, A.: Storing and analyzing historical graph data at scale. In: Proceedings of the 19th International Conference on Extending Database Technology, EDBT 2016, Bordeaux, France, 15–16 March 2016, pp. 65–76 (2016)
Koloniari, G., Pitoura, E.: Partial view selection for evolving social graphs. In: First International Workshop on Graph Data Management Experiences and Systems, GRADES 2013, co-loated with SIGMOD/PODS 2013, New York, NY, USA, 24 June 2013, p. 9 (2013)
Koloniari, G., Souravlias, D., Pitoura, E.: On graph deltas for historical queries. CoRR, abs/1302.5549 (2013). Proceedings of 1st Workshop on Online Social Systems (WOSS) 2012, in conjunction with VLDB 2012
Kosmatopoulos, A., Tsichlas, K., Gounaris, A., Sioutas, S., Pitoura, E.: HiNode: an asymptotically space-optimal storage model for historical queries on graphs. Distrib. Parallel Databases 35(3–4), 249–285 (2017)
Labouseur, A.G., Birnbaum, J., Olsen, P.W., Spillane, S.R., Vijayan, J., Hwang, J.-H., Han, W.-S.: The G* graph database: efficiently managing large distributed dynamic graphs. Distrib. Parallel Databases 33(4), 479–514 (2015)
Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: Distributed GraphLab: a framework for machine learning in the cloud. PVLDB 5(8), 716–727 (2012)
Macko, P., Marathe, V.J., Margo, D.W., Seltzer, M.I.: LLAMA: efficient graph analytics using large multiversioned arrays. In: 31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South Korea, 13–17 April 2015, pp. 363–374 (2015)
Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, 6–10 June 2010, pp. 135–146 (2010)
McGregor, A.: Graph stream algorithms: a survey. SIGMOD Rec. 43(1), 9–20 (2014)
Miao, Y., Han, W., Li, K., Wu, M., Yang, F., Zhou, L., Prabhakaran, V., Chen, E., Chen, W.: ImmortalGraph: a system for storage and analysis of temporal graphs. TOS 11(3), 14:1–14:34 (2015)
Moffitt, V.Z., Stoyanovich, J.: Towards a distributed infrastructure for evolving graph analytics. In: Proceedings of the 25th International Conference on World Wide Web, WWW 2016, Montreal, Canada, 11–15 April 2016, Companion Volume, pp. 843–848 (2016)
Moffitt, V.Z., Stoyanovich, J.: Temporal graph algebra. In: Proceedings of the 16th International Symposium on Database Programming Languages, DBPL 2017, Munich, Germany, 1 September 2017, pp. 10:1–10:12 (2017)
Moffitt, V.Z., Stoyanovich, J.: Towards sequenced semantics for evolving graphs. In: Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy, 21–24 March 2017, pp. 446–449 (2017)
Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R.: On querying historical evolving graph sequences. PVLDB 4(11), 726–737 (2011)
Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R., Cheung, D.W.: Efficient processing of shortest path queries in evolving graph sequences. Inf. Syst. 70, 18–31 (2017)
Salzberg, B., Tsotras, V.J.: Comparison of access methods for time-evolving data. ACM Comput. Surv. 31(2), 158–221 (1999)
Semertzidis, K., Pitoura, E.: Durable graph pattern queries on historical graphs. In: 32nd IEEE International Conference on Data Engineering, ICDE 2016, Helsinki, Finland, 16–20 May 2016, pp. 541–552 (2016)
Semertzidis, K., Pitoura, E.: Time traveling in graphs using a graph database. In: Proceedings of the Workshops of the EDBT/ICDT 2016 Joint Conference, EDBT/ICDT Workshops 2016, Bordeaux, France, 15 March 2016 (2016)
Semertzidis, K., Pitoura, E.: Historical traversals in native graph databases. In: Kirikova, M., Nørvåg, K., Papadopoulos, G.A. (eds.) ADBIS 2017. LNCS, vol. 10509, pp. 167–181. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66917-5_12
Semertzidis, K., Pitoura, E.: Top-k durable graph pattern queries on temporal graphs. IEEE Trans. Knowl. Data Eng. (2018, to appear)
Semertzidis, K., Pitoura, E., Lillis, K.: TimeReach: historical reachability queries on evolving graphs. In: Proceedings of the 18th International Conference on Extending Database Technology, EDBT 2015, Brussels, Belgium, 23–27 March 2015, pp. 121–132 (2015)
The Neo4j Team: Manual (2018). https://neo4j.com/docs/developer-manual/3.3/. Accessed Jan 2018
Then, M., Kersten, T., Günnemann, S., Kemper, A., Neumann, T.: Automatic algorithm transformation for efficient multi-snapshot analytics on temporal graphs. PVLDB 10(8), 877–888 (2017)
Apache TinkerPop (2018). http://tinkerpop.apache.org/. Accessed Jan 2018
Huanhuan, W., Cheng, J., Huang, S., Ke, Y., Yi, L., Yanyan, X.: Path problems in temporal graphs. PVLDB 7(9), 721–732 (2014)
Xie, W., Tian, Y., Sismanis, Y., Balmin, A., Haas, P.J.: Dynamic interaction graphs with probabilistic edge decay. In: 31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South Korea, 13–17 April 2015, pp. 1143–1154 (2015)
Yan, D., Bu, Y., Tian, Y., Deshpande, A.: Big graph analytics platforms. Found. Trends Databases 7(1–2), 1–195 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Pitoura, E. (2018). Historical Graphs: Models, Storage, Processing. In: Zimányi, E. (eds) Business Intelligence and Big Data. eBISS 2017. Lecture Notes in Business Information Processing, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-319-96655-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-96655-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96654-0
Online ISBN: 978-3-319-96655-7
eBook Packages: Computer ScienceComputer Science (R0)