Skip to main content

The Effect of Pose on the Distribution of Edge Gradients in Omnidirectional Images

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10965))

Included in the following conference series:

  • 2074 Accesses

Abstract

Images from omnidirectional cameras are used frequently in applications involving artificial intelligence and robotics as a source of rich information about the surroundings. A useful feature that can be extracted from these images is the distribution of gradients of the edges in the scene. This distribution is affected by the pose of the camera on-board a robot at any given location in the environment. This paper investigates the effect of the pose on this distribution. The gradients in the images are extracted and arranged into a histogram which is then compared to the histograms of other images using a chi-squared test. It is found that any differences in the distribution are not specific to either the position or orientation and that there is a significant difference in the distributions of two separate locations. This can aid in the localisation of robots when navigating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    During the course of this paper the word “location” will refer to the immediate environment (the set of positions that share the same contextual name) of the robot for example the kitchen or the lab. Whereas “position” will be an exact measure of where the robot is (e.g. coordinates x, y). Pose defines the position (x, y) and orientation (theta) of the robot.

  2. 2.

    https://www.sony.co.uk/electronics/support/webbie-hd-bloggie-cameras-mhspm-series/mhs-pm5. Last accessed: 1/05/2018.

  3. 3.

    https://opencv.org/. Last accessed: 1/05/2018.

References

  1. Fuentes-Pacheco, J., Ruiz-Ascencio, J., Rendón-Mancha, J.M.: Visual simultaneous localization and mapping: a survey. Artif. Intell. Rev. 43(1), 55–81 (2015)

    Article  Google Scholar 

  2. Wen, S., Zhang, Z., Ma, C., Wang, Y., Wang, H.: An extended Kalman filter-simultaneous localization and mapping method with Harris-scale-invariant feature transform feature recognition and laser mapping for humanoid robot navigation in unknown environment. Int. J. Adv. Rob. Syst. 14(6) (2017). https://doi.org/10.1177/1729881417744747

  3. Vallve, J., Sola, J., Andrade-Cetto, J.: Graph SLAM sparsification with populated topologies using factor descent optimization. IEEE Robot. Autom. Lett. 3, 1322–1329 (2018)

    Google Scholar 

  4. Lowe, T., Kim, S., Cox, M.: Complementary perception for handheld slam. IEEE Robot. Autom. Lett. 3(2), 1104–1111 (2018)

    Article  Google Scholar 

  5. Franz, M.O., Mallot, H.A.: Biomimetic robot navigation. Robot. Auton. Syst. 30(1–2), 133–153 (2000)

    Article  Google Scholar 

  6. Kyriacou, T.: An implementation of a biologically inspired model of head direction cells on a robot. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS (LNAI), vol. 6856, pp. 66–77. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23232-9_7

    Chapter  Google Scholar 

  7. Karman, S.B., Diah, S.Z.M., Gebeshuber, I.C.: Bio-inspired polarized skylight-based navigation sensors: a review. Sensors 12(11), 14232–14261 (2012)

    Article  Google Scholar 

  8. Dollé, L., Sheynikhovich, D., Girard, B., Chavarriaga, R., Guillot, A.: Path planning versus cue responding: a bio-inspired model of switching between navigation strategies. Biol. Cybern. 103(4), 299–317 (2010)

    Article  Google Scholar 

  9. Horn, B.K., Fang, Y., Masaki, I.: Time to contact relative to a planar surface. In: 2007 IEEE Intelligent Vehicles Symposium, pp. 68–74. IEEE (2007)

    Google Scholar 

  10. Zhang, H., Zhao, J.: Bio-inspired vision based robot control using featureless estimations of time-to-contact. Bioinspiration Biomim. 12(2), 025001 (2017)

    Article  Google Scholar 

  11. Paul, C.M., Magda, G., Abel, S.: Spatial memory: theoretical basis and comparative review on experimental methods in rodents. Behav. Brain Res. 203(2), 151–164 (2009)

    Article  Google Scholar 

  12. Anzai, A., Peng, X., Van Essen, D.C.: Neurons in monkey visual area V2 encode combinations of orientations. Nat. Neurosci. 10(10), 1313 (2007)

    Article  Google Scholar 

  13. Liu, A., Lin, W., Narwaria, M.: Image quality assessment based on gradient similarity. IEEE Trans. Image Process. 21(4), 1500–1512 (2012)

    Article  MathSciNet  Google Scholar 

  14. Hu, R., Collomosse, J.: A performance evaluation of gradient field HOG descriptor for sketch based image retrieval. Comput. Vis. Image Underst. 117(7), 790–806 (2013)

    Article  Google Scholar 

  15. Kröse, B.J., Booij, O., Zivkovic, Z., et al.: A geometrically constrained image similarity measure for visual mapping, localization and navigation. In: EMCR (2007)

    Google Scholar 

  16. Jacquey, F., Comby, F., Strauss, O.: Non-additive approach for omnidirectional image gradient estimation. In: 2007 IEEE 11th International Conference on Computer Vision (ICCV 2007), pp. 1–6. IEEE (2007)

    Google Scholar 

  17. Cinaroglu, I., Bastanlar, Y.: A direct approach for object detection with catadioptric omnidirectional cameras. Sig. Image Video Process. 10(2), 413–420 (2016)

    Article  Google Scholar 

  18. Sobel, I.: An isotropic 3\(\times \)3 image gradient operator. In: Machine Vision for Three-Dimensional Scenes, pp. 376–379 (1990)

    Google Scholar 

  19. Greenwood, P.E., Nikulin, M.S.: A Guide to Chi-Squared Testing, vol. 280. Wiley, Hoboken (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theocharis Kyriacou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jarvis, D., Kyriacou, T. (2018). The Effect of Pose on the Distribution of Edge Gradients in Omnidirectional Images. In: Giuliani, M., Assaf, T., Giannaccini, M. (eds) Towards Autonomous Robotic Systems. TAROS 2018. Lecture Notes in Computer Science(), vol 10965. Springer, Cham. https://doi.org/10.1007/978-3-319-96728-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96728-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96727-1

  • Online ISBN: 978-3-319-96728-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics