Abstract
The maximum edge-weight clique problem is to find a clique whose sum of edge-weight is maximum for a given edge-weighted undirected graph. The problem is NP-hard and was formulated as a mathematical programming problem in previous studies. In this paper, we propose an exact algorithm based on branch-and-bound. By some computational experiments, we confirmed our proposal algorithm is faster than the methods based on mathematical programming.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alidaee, B., Glover, F., Kochenberger, G., Wang, H.: Solving the maximum edge weight clique problem via unconstrained quadratic programming. Eur. J. Oper. Res. 181(2), 592–597 (2007)
Aringhieri, R., Bruglieri, M., Cordone, R.: Optimal results and tight bounds for the maximum diversity problem. Found. Comput. Decis. Sci. 34(2), 73 (2009)
Bahadur, K., Akutsu, T., Tomita, E., Seki, T.: Protein side-chain packing problem: a maximum edge-weight clique algorithmic approach. In: The Second Conference on Asia-Pacific Bioinformatics, vol. 29, pp. 191–200. Australian Computer Society, Inc. (2004)
Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.M.: Improvements to MCS algorithm for the maximum clique problem. J. Comb. Optim. 27(2), 397–416 (2014)
Bogdanova, G.T., Brouwer, A.E., Kapralov, S.N., Östergård, P.R.: Error-correcting codes over an alphabet of four elements. Des. Codes Cryptogr. 23(3), 333–342 (2001)
Brown, J., Dukka Bahadur, K., Tomita, E., Akutsu, T.: Multiple methods for protein side chain packing using maximum weight cliques. Genome Inf. 17(1), 3–12 (2006)
Brown, K.L.: Combinatorial auction test suite (CATS) (2000). http://www.cs.ubc.ca/~kevinlb/CATS/
Cavique, L.: A scalable algorithm for the market basket analysis. J. Retail. Consum. Serv. 14(6), 400–407 (2007)
Corman, S.R., Kuhn, T., McPhee, R.D., Dooley, K.J.: Studying complex discursive systems. Hum. Commun. Res. 28(2), 157–206 (2002)
Corman, S.R., et al.: Pajek datasets: reuters terror news network. http://vlado.fmf.uni-lj.si/pub/networks/data/CRA/terror.htm
Fang, Z., Li, C.M., Xu, K.: An exact algorithm based on MaxSAT reasoning for the maximum weight clique problem. J. Artif. Intell. Res. 55, 799–833 (2016)
Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company (1979)
Gouveia, L., Martins, P.: Solving the maximum edge-weight clique problem in sparse graphs with compact formulations. Eur. J. Comput. Optim. 3(1), 1–30 (2015)
Horaud, R., Skordas, T.: Stereo correspondence through feature grouping and maximal cliques. IEEE Trans. Pattern Anal. Mach. Intell. 11(11), 1168–1180 (1989)
Kc, D.B., Akutsu, T., Tomita, E., Seki, T., Fujiyama, A.: Point matching under non-uniform distortions and protein side chain packing based on efficient maximum clique algorithms. Genome Inf. 13, 143–152 (2002)
Li, C.M., Jiang, H., Manyà , F.: On minimization of the number of branches in branch-and-bound algorithms for the maximum clique problem. Comput. Oper. Res. 84, 1–15 (2017)
MartÃ, R., Gallego, M., Duarte, A.: A branch and bound algorithm for the maximum diversity problem. Eur. J. Oper. Res. 200(1), 36–44 (2010)
McCreesh, C., Prosser, P., Simpson, K., Trimble, J.: On maximum weight clique algorithms, and how they are evaluated. In: International Conference on Principles and Practice of Constraint Programming, pp. 206–225. Springer (2017)
Östergård, P.R.: A new algorithm for the maximum-weight clique problem. Nordic J. Comput. 8(4), 424–436 (2001)
Park, K., Lee, K., Park, S.: An extended formulation approach to the edge-weighted maximal clique problem. Eur. J. Oper. Res. 95(3), 671–682 (1996)
Pullan, W.: Approximating the maximum vertex/edge weighted clique using local search. J. Heuristics 14(2), 117–134 (2008)
San Segundo, P., RodrÃguez-Losada, D., Jiménez, A.: An exact bit-parallel algorithm for the maximum clique problem. Comput. Oper. Res. 38(2), 571–581 (2011)
Shimizu, S., Yamaguchi, K., Masuda, S.: Mathematical programming formulation for the maximum edge-weight clique problem. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. (in Japanese) J100-A(8), 313–315 (2017)
Shimizu, S., Yamaguchi, K., Saitoh, T., Masuda, S.: Fast maximum weight clique extraction algorithm: optimal tables for branch-and-bound. Descr. Appl. Math. 223, 120–134 (2017)
Sørensen, M.M.: New facets and a branch-and-cut algorithm for the weighted clique problem. Eur. J. Oper. Res. 154(1), 57–70 (2004)
Sorour, S., Valaee, S.: Minimum broadcast decoding delay for generalized instantly decodable network coding. In: Global Telecommunications Conference (GLOBECOM 2010), pp. 1–5. IEEE (2010)
Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments. J. Glob. Optim. 37(1), 95–111 (2007)
Tomita, E., Yoshida, K., Hatta, T., Nagao, A., Ito, H., Wakatsuki, M.: A much faster branch-and-bound algorithm for finding a maximum clique. In: International Workshop on Frontiers in Algorithmics, pp. 215–226. Springer (2016)
Trick, M., Chvatal, V., Cook, B., Johnson, D., McGeoch, C., Tarjan, B., et al.: DIMACS implementation challenges. http://dimacs.rutgers.edu/Challenges/
Yamaguchi, K., Masuda, S.: A new exact algorithm for the maximum weight clique problem. In: 23rd International Conference on Circuits/Systems, Computers and Communications (ITC-CSCC08), pp. 317–320 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Shimizu, S., Yamaguchi, K., Masuda, S. (2019). A Branch-and-Bound Based Exact Algorithm for the Maximum Edge-Weight Clique Problem. In: Lee, R. (eds) Computational Science/Intelligence & Applied Informatics. CSII 2018. Studies in Computational Intelligence, vol 787. Springer, Cham. https://doi.org/10.1007/978-3-319-96806-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-96806-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96805-6
Online ISBN: 978-3-319-96806-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)