Skip to main content

A Branch-and-Bound Based Exact Algorithm for the Maximum Edge-Weight Clique Problem

  • Chapter
  • First Online:
Computational Science/Intelligence & Applied Informatics (CSII 2018)

Abstract

The maximum edge-weight clique problem is to find a clique whose sum of edge-weight is maximum for a given edge-weighted undirected graph. The problem is NP-hard and was formulated as a mathematical programming problem in previous studies. In this paper, we propose an exact algorithm based on branch-and-bound. By some computational experiments, we confirmed our proposal algorithm is faster than the methods based on mathematical programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alidaee, B., Glover, F., Kochenberger, G., Wang, H.: Solving the maximum edge weight clique problem via unconstrained quadratic programming. Eur. J. Oper. Res. 181(2), 592–597 (2007)

    Article  Google Scholar 

  2. Aringhieri, R., Bruglieri, M., Cordone, R.: Optimal results and tight bounds for the maximum diversity problem. Found. Comput. Decis. Sci. 34(2), 73 (2009)

    MATH  Google Scholar 

  3. Bahadur, K., Akutsu, T., Tomita, E., Seki, T.: Protein side-chain packing problem: a maximum edge-weight clique algorithmic approach. In: The Second Conference on Asia-Pacific Bioinformatics, vol. 29, pp. 191–200. Australian Computer Society, Inc. (2004)

    Google Scholar 

  4. Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.M.: Improvements to MCS algorithm for the maximum clique problem. J. Comb. Optim. 27(2), 397–416 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bogdanova, G.T., Brouwer, A.E., Kapralov, S.N., Östergård, P.R.: Error-correcting codes over an alphabet of four elements. Des. Codes Cryptogr. 23(3), 333–342 (2001)

    Article  MathSciNet  Google Scholar 

  6. Brown, J., Dukka Bahadur, K., Tomita, E., Akutsu, T.: Multiple methods for protein side chain packing using maximum weight cliques. Genome Inf. 17(1), 3–12 (2006)

    Google Scholar 

  7. Brown, K.L.: Combinatorial auction test suite (CATS) (2000). http://www.cs.ubc.ca/~kevinlb/CATS/

  8. Cavique, L.: A scalable algorithm for the market basket analysis. J. Retail. Consum. Serv. 14(6), 400–407 (2007)

    Article  Google Scholar 

  9. Corman, S.R., Kuhn, T., McPhee, R.D., Dooley, K.J.: Studying complex discursive systems. Hum. Commun. Res. 28(2), 157–206 (2002)

    Google Scholar 

  10. Corman, S.R., et al.: Pajek datasets: reuters terror news network. http://vlado.fmf.uni-lj.si/pub/networks/data/CRA/terror.htm

  11. Fang, Z., Li, C.M., Xu, K.: An exact algorithm based on MaxSAT reasoning for the maximum weight clique problem. J. Artif. Intell. Res. 55, 799–833 (2016)

    Article  MathSciNet  Google Scholar 

  12. Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company (1979)

    Google Scholar 

  13. Gouveia, L., Martins, P.: Solving the maximum edge-weight clique problem in sparse graphs with compact formulations. Eur. J. Comput. Optim. 3(1), 1–30 (2015)

    Article  MathSciNet  Google Scholar 

  14. Horaud, R., Skordas, T.: Stereo correspondence through feature grouping and maximal cliques. IEEE Trans. Pattern Anal. Mach. Intell. 11(11), 1168–1180 (1989)

    Article  Google Scholar 

  15. Kc, D.B., Akutsu, T., Tomita, E., Seki, T., Fujiyama, A.: Point matching under non-uniform distortions and protein side chain packing based on efficient maximum clique algorithms. Genome Inf. 13, 143–152 (2002)

    Google Scholar 

  16. Li, C.M., Jiang, H., Manyà, F.: On minimization of the number of branches in branch-and-bound algorithms for the maximum clique problem. Comput. Oper. Res. 84, 1–15 (2017)

    Article  MathSciNet  Google Scholar 

  17. Martí, R., Gallego, M., Duarte, A.: A branch and bound algorithm for the maximum diversity problem. Eur. J. Oper. Res. 200(1), 36–44 (2010)

    Article  Google Scholar 

  18. McCreesh, C., Prosser, P., Simpson, K., Trimble, J.: On maximum weight clique algorithms, and how they are evaluated. In: International Conference on Principles and Practice of Constraint Programming, pp. 206–225. Springer (2017)

    Google Scholar 

  19. Östergård, P.R.: A new algorithm for the maximum-weight clique problem. Nordic J. Comput. 8(4), 424–436 (2001)

    MathSciNet  Google Scholar 

  20. Park, K., Lee, K., Park, S.: An extended formulation approach to the edge-weighted maximal clique problem. Eur. J. Oper. Res. 95(3), 671–682 (1996)

    Article  Google Scholar 

  21. Pullan, W.: Approximating the maximum vertex/edge weighted clique using local search. J. Heuristics 14(2), 117–134 (2008)

    Article  Google Scholar 

  22. San Segundo, P., Rodríguez-Losada, D., Jiménez, A.: An exact bit-parallel algorithm for the maximum clique problem. Comput. Oper. Res. 38(2), 571–581 (2011)

    Article  MathSciNet  Google Scholar 

  23. Shimizu, S., Yamaguchi, K., Masuda, S.: Mathematical programming formulation for the maximum edge-weight clique problem. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. (in Japanese) J100-A(8), 313–315 (2017)

    Google Scholar 

  24. Shimizu, S., Yamaguchi, K., Saitoh, T., Masuda, S.: Fast maximum weight clique extraction algorithm: optimal tables for branch-and-bound. Descr. Appl. Math. 223, 120–134 (2017)

    Article  MathSciNet  Google Scholar 

  25. Sørensen, M.M.: New facets and a branch-and-cut algorithm for the weighted clique problem. Eur. J. Oper. Res. 154(1), 57–70 (2004)

    Article  MathSciNet  Google Scholar 

  26. Sorour, S., Valaee, S.: Minimum broadcast decoding delay for generalized instantly decodable network coding. In: Global Telecommunications Conference (GLOBECOM 2010), pp. 1–5. IEEE (2010)

    Google Scholar 

  27. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments. J. Glob. Optim. 37(1), 95–111 (2007)

    Article  MathSciNet  Google Scholar 

  28. Tomita, E., Yoshida, K., Hatta, T., Nagao, A., Ito, H., Wakatsuki, M.: A much faster branch-and-bound algorithm for finding a maximum clique. In: International Workshop on Frontiers in Algorithmics, pp. 215–226. Springer (2016)

    Google Scholar 

  29. Trick, M., Chvatal, V., Cook, B., Johnson, D., McGeoch, C., Tarjan, B., et al.: DIMACS implementation challenges. http://dimacs.rutgers.edu/Challenges/

  30. Yamaguchi, K., Masuda, S.: A new exact algorithm for the maximum weight clique problem. In: 23rd International Conference on Circuits/Systems, Computers and Communications (ITC-CSCC08), pp. 317–320 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Yamaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimizu, S., Yamaguchi, K., Masuda, S. (2019). A Branch-and-Bound Based Exact Algorithm for the Maximum Edge-Weight Clique Problem. In: Lee, R. (eds) Computational Science/Intelligence & Applied Informatics. CSII 2018. Studies in Computational Intelligence, vol 787. Springer, Cham. https://doi.org/10.1007/978-3-319-96806-3_3

Download citation

Publish with us

Policies and ethics