Skip to main content

Proportionality-Based Gradient Methods with Applications in Contact Mechanics

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering (HPCSE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11087))

Abstract

Two proportionality based gradient methods for the solution of large convex bound constrained quadratic programming problems, MPRGP (Modified Proportioning with Reduced Gradient Projections) and P2GP (Proportionality-based Two-phase Gradient Projection) are presented and applied to the solution of auxiliary problems in the inner loop of an augmented lagrangian algorithm called SMALBE (Semi-monotonic Augmented Lagrangian for Bound and Equality constraints). The SMALBE algorithm is used to generate the Lagrange multipliers for the equality constraints. The performance of the algorithms is tested on the solution of the discretized contact problems by means of TFETI (Total Finite Element Tearing and Interconnecting).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonelli, L., De Simone, V., di Serafino, D.: On the application of the spectral projected gradient method in image segmentation. J. Math. Imaging Vis. 54(1), 106–116 (2015)

    Article  MathSciNet  Google Scholar 

  2. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)

    Article  MathSciNet  Google Scholar 

  3. Bielschowski, R.H., Friedlander, A., Gomes, F.A.M., Martínez, J.M., Raydan, M.: An adaptive algorithm for bound constrained quadratic minimization. Invest. Oper. 7, 67–102 (1997)

    Google Scholar 

  4. Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for constrained image deblurring. Inverse Probl. 25, 015002 (2009)

    Article  MathSciNet  Google Scholar 

  5. Cafieri, S., D’Apuzzo, M., Marino, M., Mucherino, M., Toraldo, G.: Interior-point solver for large-scale quadratic programming problems with bound constraints. J. Optim. Theory Appl. 129(1), 55–75 (2006)

    Article  MathSciNet  Google Scholar 

  6. Cafieri, S., D’Apuzzo, M., De Simone, V., di Serafino, D., Toraldo, G.: Convergence analysis of an inexact potential reduction method for convex quadratic programming. J. Optim. Theory Appl. 135(3), 355–366 (2007)

    Article  MathSciNet  Google Scholar 

  7. Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained problems. Math. Program. 39, 93–116 (1987)

    Article  MathSciNet  Google Scholar 

  8. di Serafino, D., Ruggiero, V., Toraldo, G., Zanni, L.: On the steplength selection in gradient methods for unconstrained optimization. Appl. Math. Comput. (2017). https://doi.org/10.1016/j.amc.2017.07.037

  9. di Serafino, D., Toraldo, G., Viola, M., Barlow, J.: A two-phase gradient method for quadratic programming problems with a single linear constraint and bounds on the variables. SIAM Journal on Optimization (2018, to appear)

    Google Scholar 

  10. De Asmundis, R., di Serafino, D., Landi, G.: On the regularizing behavior of the SDA and SDC gradient methods in the solution of linear ill-posed problems. J. Comput. Appl. Math. 302, 81–93 (2016)

    Article  MathSciNet  Google Scholar 

  11. Dostál, Z.: Box constrained quadratic programming with proportioning and projections. SIAM J. Optim. 7(3), 871–887 (1997)

    Article  MathSciNet  Google Scholar 

  12. Dostál, Z.: Inexact semi-monotonic augmented Lagrangians with optimal feasibility convergence for convex bound and equality constrained quadratic programming. SIAM J. Numer. Anal. 43(1), 96–115 (2005)

    Article  MathSciNet  Google Scholar 

  13. Dostál, Z.: Semi-monotonic inexact augmented Lagrangians for quadratic programing with equality constraints. Optim. Methods Softw. 20(6), 715–727 (2005)

    Article  MathSciNet  Google Scholar 

  14. Dostál, Z.: On the decrease of a quadratic function along the projected-gradient path. ETNA 31, 25–29 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Dostál, Z.: Optimal Quadratic Programming Algorithms: With Applications to Variational Inequalities. Springer, Heidelberg (2009). https://doi.org/10.1007/b138610

    Book  MATH  Google Scholar 

  16. Dostál, Z., Domorádová, M., Sadowská, M.: Superrelaxation in minimizing quadratic functions subject to bound constraints. Comput. Optim. Appl. 48(1), 23–44 (2011)

    Article  MathSciNet  Google Scholar 

  17. Dostál, Z., Kozubek, T., Markopoulos, A., Brzobohatý, T., Vondrák, V., Horyl, P.: Scalable TFETI algorithm for two dimensional multibody contact problems with friction. J. Computat. Appl. Math. 235(2), 403–418 (2010)

    Article  MathSciNet  Google Scholar 

  18. Dostál, Z., Kozubek, T., Brzobohatý, T., Markopoulos, A., Vlach, O.: Scalable TFETI with preconditioning by conjugate projector for transient frictionless contact problems of elasticity. CMAME 247–248, 37–50 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Dostál, Z., Kozubek, T., Sadowská, M., Vondrák, V.: Scalable Algorithms for Contact Problems. Springer, Heidelberg (2017). https://doi.org/10.1007/978-1-4939-6834-3

    Book  MATH  Google Scholar 

  20. Dostál, Z., Kozubek, T., Vondrák, V., Brzobohatý, T., Markopoulos, A.: Scalable TFETI algorithm for the solution of multibody contact problems of elasticity. Int. J. Numer. Methods Eng. 82(11), 1384–1405 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Dostál, Z., Schöberl, J.: Minimizing quadratic functions subject to bound constraints with the rate of convergence and finite termination. Comput. Optimiz. Appl. 30(1), 23–44 (2005)

    Article  MathSciNet  Google Scholar 

  22. Farhat, C., Roux, F.-X.: A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Methods Eng. 32, 1205–1227 (1991)

    Article  MathSciNet  Google Scholar 

  23. Frassoldati, G., Zanni, L., Zanghirati, G.: New adaptive stepsize selections in gradient methods. J. Ind. Manag. Optim. 4, 299–312 (2008)

    Article  MathSciNet  Google Scholar 

  24. Friedlander, A., Martínez, J.M.: On the maximization of a concave quadratic function with box constraints. SIAM J. Optim. 4, 177–192 (1994)

    Article  MathSciNet  Google Scholar 

  25. Moré, J.J., Toraldo, G.: On the solution of large quadratic programming problems with bound constraints. SIAM J. Optim. 1, 93–113 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPS II) project “IT4Innovations excellence in science - LQ1602” and by the IT4Innovations infrastructure which is supported from the Large Infrastructures for Research, Experimental Development and Innovations project “IT4Innovations National Supercomputing Center - LM2015070”. The work was partially supported by Gruppo Nazionale per il Calcolo Scientifico - Istituto Nazionale di Alta Matematica (GNCS-INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oldřich Vlach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dostál, Z., Toraldo, G., Viola, M., Vlach, O. (2018). Proportionality-Based Gradient Methods with Applications in Contact Mechanics. In: Kozubek, T., et al. High Performance Computing in Science and Engineering. HPCSE 2017. Lecture Notes in Computer Science(), vol 11087. Springer, Cham. https://doi.org/10.1007/978-3-319-97136-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97136-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97135-3

  • Online ISBN: 978-3-319-97136-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics