Skip to main content

Vehicular Crowdsensing for Smart Cities

  • Chapter
  • First Online:
Handbook of Smart Cities

Abstract

As smart vehicles begin to roam the streets, new possibilities will emerge for large-scale data acquisition tasks necessary for proactive smart cities applications. Unlike mobile devices, smart vehicles carry powerful sensors and are highly mobile; they can cover large areas and perform high quality sensing. However due to restricted reward structures and limited bandwidths of cellular and VANETs, not all vehicles can participate equally. Thus, we must find a method for selecting promising participants which can efficiently the required collect sensing information. In this chapter, we present ideas for participant selection under varying conditions from large scale crowdsensing to personalized crowdsensing. We present several algorithms using a common framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cisco visual networking index: Global mobile data traffic forecast update, 2016–2021 white paper, Mar 2017.

    Google Scholar 

  2. S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan. A comprehensive survey on vehicular ad hoc network. Journal of network and computer applications, 37:380–392, 2014.

    Article  Google Scholar 

  3. L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and A. Rabuffi. CRAWDAD dataset roma/taxi (v. 2014-07-17). Downloaded from https://crawdad.org/roma/taxi/20140717, July 2014.

  4. M. Buhrmester, T. Kwang, and S. D. Gosling. Amazon’s mechanical turk: A new source of inexpensive, yet high-quality, data? Perspectives on psychological science, 6(1):3–5, 2011.

    Article  Google Scholar 

  5. C. Cooper, D. Franklin, M. Ros, F. Safaei, and M. Abolhasan. A comparative survey of vanet clustering techniques. IEEE Communications Surveys & Tutorials, 19(1):657–681, 2017.

    Article  Google Scholar 

  6. Y. Gao, W. Dong, K. Guo, X. Liu, Y. Chen, X. Liu, J. Bu, and C. Chen. Mosaic: A low-cost mobile sensing system for urban air quality monitoring. In Computer Communications, IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on, pages 1–9. IEEE, 2016.

    Google Scholar 

  7. Google. Waze mobile, 2017. https://www.waze.com/.

  8. S. A. Hamid, H. Abouzeid, H. S. Hassanein, and G. Takahara. Optimal recruitment of smart vehicles for reputation-aware public sensing. In Wireless Communications and Networking Conference (WCNC), 2014 IEEE, pages 3160–3165. IEEE, 2014.

    Google Scholar 

  9. K. Han, C. Chen, Q. Zhao, and X. Guan. Trajectory-based node selection scheme in vehicular crowdsensing. In Communications in China (ICCC), 2015 IEEE/CIC International Conference on, pages 1–6. IEEE, 2015.

    Google Scholar 

  10. Z. He, J. Cao, and X. Liu. High quality participant recruitment in vehicle-based crowdsourcing using predictable mobility. In Computer Communications (INFOCOM), 2015 IEEE Conference on, pages 2542–2550. IEEE, 2015.

    Google Scholar 

  11. C. Hu, M. Xiao, L. Huang, and G. Gao. Truthful incentive mechanism for vehicle-based nondeterministic crowdsensing. In Quality of Service (IWQoS), 2016 IEEE/ACM 24th International Symposium on, pages 1–10. IEEE, 2016.

    Google Scholar 

  12. M. Hu, Z. Zhong, Y. Niu, and M. Ni. Duration-variable participant recruitment for urban crowdsourcing with indeterministic trajectories. IEEE Transactions on Vehicular Technology, 2017.

    Google Scholar 

  13. D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker. Recent development and applications of SUMO - Simulation of Urban MObility. International Journal On Advances in Systems and Measurements, 5(3&4):128–138, December 2012.

    Google Scholar 

  14. Y. Liu, J. Niu, and X. Liu. Comprehensive tempo-spatial data collection in crowd sensing using a heterogeneous sensing vehicle selection method. Personal and Ubiquitous Computing, 20(3):397–411, 2016.

    Article  Google Scholar 

  15. D. Peng, F. Wu, and G. Chen. Pay as how well you do: A quality based incentive mechanism for crowdsensing. In Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pages 177–186. ACM, 2015.

    Google Scholar 

  16. S. Reddy, D. Estrin, and M. Srivastava. Recruitment framework for participatory sensing data collections. In International Conference on Pervasive Computing, pages 138–155. Springer, 2010.

    Google Scholar 

  17. L. Shao, C. Wang, Z. Li, and C. Jiang. Traffic condition estimation using vehicular crowdsensing data. In 2015 IEEE 34th International Performance Computing and Communications Conference (IPCCC), pages 1–8, Dec 2015.

    Google Scholar 

  18. S. Ucar, S. C. Ergen, and O. Ozkasap. Vmasc: Vehicular multi-hop algorithm for stable clustering in vehicular ad hoc networks. In Wireless Communications and Networking Conference (WCNC), 2013 IEEE, pages 2381–2386. IEEE, 2013.

    Google Scholar 

  19. S. Uppoor, O. Trullols-Cruces, M. Fiore, and J. M. Barcelo-Ordinas. Generation and analysis of a large-scale urban vehicular mobility dataset. IEEE Transactions on Mobile Computing, 13(5):1061–1075, 2014.

    Article  Google Scholar 

  20. M. Wu, D. Ye, S. Tang, and R. Yu. Collaborative vehicle sensing in bus networks: A stackelberg game approach. In Communications in China (ICCC), 2016 IEEE/CIC International Conference on, pages 1–6. IEEE, 2016.

    Google Scholar 

  21. K. Yi, R. Du, L. Liu, Q. Chen, and K. Gao. Fast participant recruitment algorithm for large-scale vehicle-based mobile crowd sensing. Pervasive and Mobile Computing, 2017.

    Google Scholar 

  22. T. Y. Yu, X. Zhu, and H. Chen. Gosense: Efficient vehicle selection for user defined vehicular crowdsensing. In 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), pages 1–5, June 2017.

    Google Scholar 

  23. X. Zhang, Z. Yang, W. Sun, Y. Liu, S. Tang, K. Xing, and X. Mao. Incentives for mobile crowd sensing: A survey. IEEE Communications Surveys & Tutorials, 18(1):54–67, 2016.

    Article  Google Scholar 

  24. X. Zhang, Z. Yang, Z. Zhou, H. Cai, L. Chen, and X. Li. Free market of crowdsourcing: Incentive mechanism design for mobile sensing. IEEE transactions on parallel and distributed systems, 25(12):3190–3200, 2014.

    Article  Google Scholar 

  25. D. Zhao, H. Ma, L. Liu, and X.-Y. Li. Opportunistic coverage for urban vehicular sensing. Computer Communications, 60:71–85, 2015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthucumaru Maheswaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, TY., Zhu, X., Maheswaran, M. (2018). Vehicular Crowdsensing for Smart Cities. In: Maheswaran, M., Badidi, E. (eds) Handbook of Smart Cities. Springer, Cham. https://doi.org/10.1007/978-3-319-97271-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97271-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97270-1

  • Online ISBN: 978-3-319-97271-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics