Abstract
Dimension reduction is an important preprocess for multi-label classification, such as feature extraction. This paper attempts to explore multi-label learning in the label space. Our approach works using machine learning’s smoothness assumption, where nearby points are more likely to share the same label and the feature manifold and label manifold can share the local topology structure. Thus, here we propose a new multi-label feature-extraction algorithm with a new method for embedding regression, i.e., manifold regularization learning in the subspace formed by multi-labels to reconstruct and use the label manifold. We integrate two least-squares formulas by linear combination, and establish the regression estimation for multi-label manifold learning. To test our approach, we conduct multiple experiments and compare our algorithm against four other multi-label learning algorithms. Results show that our approach significantly improves the performance of label manifold learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rubin, T.N., Chambers, A., Smyth, P., Steyvers, M.: Statistical topic models for multi-label document classification. Mach. Learn. 88(1–2), 157–208 (2012)
Yang, B., Sun, J., Wang, T., Chen, Z.: Effective multilabel active learning for text classification. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 917–926 (2009)
Cabral, R.S., Torre, F., Costeira, J.P., Bernardino, A.: Matrix completion for multi-label image classification. In: Advances in Neural Information Processing Systems, pp. 190–198 (2011)
Wang, H., Huang, H., Ding, C.: Image annotation using multi-label correlated green’s function. In: 12th International Conference on Computer Vision, pp. 2029–2034 (2009)
Lo, H., Wang, J., Wang, H., Lin, S.: Costsensitive multi-label learning for audio tag annotation and retrieval. IEEE Trans. Multimedia 13(3), 518–529 (2011)
Sanden, C., Zhang, J.: Enhancing multi-label music genre classification through ensemble techniques. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 705–714 (2011)
Geng, X., Ji, R.: Label distribution learning. In: Proceedings of the International Conference on Data Mining Workshops, Dallas, TA, pp. 377–383 (2013)
Zhu, X., Lafferty, J., Rosenfeld, R.: Semi-supervised learning with graphs. In: International Joint Conference on Natural Language Processing, vol. 6493, no. 10, pp. 2465–2472 (2005)
Hou, P., Geng, X., Zhang, M.: Multi-label manifold learning. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 1680–1686 (2016)
Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)
Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)
Zhang, M., Zhou, Z.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)
Elisseeff, A., Weston, J.: A kernel method for multilabelled classification. In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, pp. 681–687 (2001)
Frnkranz, J., Hllermeier, E., Menca, E., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73(2), 133–153 (2008)
Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011)
Geng, X.: Label distribution learning. IEEE Trans. Knowl. Data Eng. 28(7), 1734–1748 (2016)
Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)
He, X., Niyogi, P.: Locality preserving projections. Adv. Neural Inf. Process. Syst. 16(1), 86–197 (2004)
Zhang, Y., Zhang, Z., Qin, J., Li, F.: Semi-supervised local multi-manifold Isomap by linear embedding for feature extraction. Pattern Recogn. 76, 662–678 (2018)
Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7(1), 2399–2434 (2006)
Belkin, M., Niyogi, P.: On manifold regularization. Neurocomputing 73(10–12), 2203–2216 (2010)
Chen, L., Tsang, I., Xu, D.: Laplacian embedded regression for scalable manifold regularization. IEEE Trans. Neural Netw. Learn. Syst. 23(6), 902–915 (2012)
Zhang, Z., Li, F., Zhao, M., Zhang, L., Yan, S.: Robust neighborhood preserving projection by nuclear/L2,1-norm regularization for image feature extraction. IEEE Trans. Image Process. 26(4), 1607–1622 (2017)
Pahikkala, T., Airola, A.: RLscore: regularized least-squares learners. J. Mach. Learn. Res. 17, 1–5 (2016)
Zhang, Z., Chow, T., Zhao, M.: Trace ratio optimization-based semi-supervised nonlinear dimensionality reduction for marginal manifold visualization. IEEE Trans. Knowl. Data Eng. 25(5), 1148–1161 (2013)
Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J. Sci. Comput. 26(1), 313–338 (2004)
Tuia, D., Verrelst, J., Alonso, L., Prez-Cruz, F., Camps-Valls, G.: Multioutput support vector regression for remote sensing biophysical parameter estimation. IEEE Geosci. Remote Sens. Lett. 8(4), 804–808 (2011)
Prez-Cruz, F., Navia-Vazquez, A., Alarcon-Diana, P., Artes-Rodriguez, A.: An IRWLS procedure for SVR. In: European Signal Processing Conference, pp. 1–4 (2000)
Tan, C., Chen, C., Guan, J.: A nonlinear dimension reduction method with both distance and neighborhood preservation. In: Wang, M. (ed.) KSEM 2013. LNCS (LNAI), vol. 8041, pp. 48–63. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39787-5_5
Tenenbaum, J., De Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)
Mulan: Multi-label datasets for Multi-Label Learning[EB/OL]. http://mulan.sourceforge.net/datasets-mlc.html. Accessed 01 Feb 2018
Zhang, M., Peña, J., Robles, V.: Feature selection for multi-label naive Bayes classification. Inf. Sci. 179(19), 3218–3229 (2009)
Zhang, Q., Zhong, Y., Zhang, M.: Feature-induced labeling information enrichment for multi-label learning. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (2018)
Acknowledgements
This work is supported by National Natural Science Foundation of China (41471371, 61702270), the Project funded by China Postdoctoral Science Foundation under Grant. 2017M621592 and the open project foundation of Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Grant No. IIPL-2016-009.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Tan, C., Ji, G. (2018). DKE-RLS: A Manifold Reconstruction Algorithm in Label Spaces with Double Kernel Embedding-Regularized Least Square. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11012. Springer, Cham. https://doi.org/10.1007/978-3-319-97304-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-97304-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97303-6
Online ISBN: 978-3-319-97304-3
eBook Packages: Computer ScienceComputer Science (R0)