Skip to main content

Learning Relations from Social Tagging Data

  • Conference paper
  • First Online:
PRICAI 2018: Trends in Artificial Intelligence (PRICAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11012))

Included in the following conference series:

Abstract

An interesting research direction is to discover structured knowledge from user generated data. Our work aims to find relations among social tags and organise them into hierarchies so as to better support discovery and search for online users. We cast relation discovery in this context to a binary classification problem in supervised learning. This approach takes as input features of two tags extracted using probabilistic topic modelling, and predicts whether a broader-narrower relation holds between them. Experiments were conducted using two large, real-world datasets, the Bibsonomy dataset which is used to extract tags and their features, and the DBpedia dataset which is used as the ground truth. Three sets of features were designed and extracted based on topic distributions, similarity and probabilistic associations. Evaluation results with respect to the ground truth demonstrate that our method outperforms existing ones based on various features and heuristics. Future studies are suggested to study the Knowledge Base Enrichment from folksonomies and deep neural network approaches to process tagging data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.bibsonomy.org/.

  2. 2.

    http://dbpedia.org/.

  3. 3.

    http://wordnet.princeton.edu/.

  4. 4.

    http://lod-cloud.net/.

  5. 5.

    https://www.kde.cs.uni-kassel.de/bibsonomy/dumps, the “2015-07-01” version.

  6. 6.

    http://mallet.cs.umass.edu/.

  7. 7.

    http://downloads.dbpedia.org/2015-10/core/, the “2015-10” version.

References

  1. Almoqhim, F., Millard, D.E., Shadbolt, N.: Improving on popularity as a proxy for generality when building tag hierarchies from folksonomies. In: Aiello, L.M., McFarland, D. (eds.) SocInfo 2014. LNCS, vol. 8851, pp. 95–111. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13734-6_7

    Chapter  Google Scholar 

  2. Andrews, P., Pane, J.: Sense induction in folksonomies: a review. Artif. Intell. Rev. 40(2), 147–174 (2013)

    Article  Google Scholar 

  3. Andrews, P., Pane, J., Zaihrayeu, I.: Semantic disambiguation in folksonomy: a case study. In: Bernardi, R., Chambers, S., Gottfried, B., Segond, F., Zaihrayeu, I. (eds.) AT4DL/NLP4DL -2009. LNCS, vol. 6699, pp. 114–134. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23160-5_8

    Chapter  Google Scholar 

  4. Benz, D., Hotho, A., Stumme, G., Stützer, S.: Semantics made by you and me: Self-emerging ontologies can capture the diversity of shared knowledge. In: Proceedings of the 2nd Web Science Conference (WebSci 2010) (2010)

    Google Scholar 

  5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)

    MATH  Google Scholar 

  6. Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J.L., Blei, D.M.: Reading tea leaves: how humans interpret topic models. In: Advances in Neural Information Processing Systems, pp. 288–296 (2009)

    Google Scholar 

  7. Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and Applications. Springer, New York Inc., Secaucus (2006). https://doi.org/10.1007/978-0-387-39252-3

    Book  Google Scholar 

  8. Djuana, E., Xu, Y., Li, Y.: Learning personalized tag ontology from user tagging information. In: Proceedings of the Tenth Australasian Data Mining Conference - Volume 134 (AusDM 2012), pp. 183–189. Australian Computer Society, Inc. (2012)

    Google Scholar 

  9. Dong, H., Wang, W., Liang, H.N.: Learning structured knowledge from social tagging data: a critical review of methods and techniques. In: 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity), pp. 307–314, December 2015

    Google Scholar 

  10. Dong, H., Wang, W., Frans, C.: Deriving dynamic knowledge from academic social tagging data: a novel research direction. In: iConference 2017 Proceedings. iSchools (2017)

    Google Scholar 

  11. García-Silva, A., Corcho, O., Alani, H., Gómez-Pérez, A.: Review of the state of the art: discovering and associating semantics to tags in folksonomies. Knowl. Eng. Rev. 27(1), 57–85 (2012)

    Article  Google Scholar 

  12. García-Silva, A., García-Castro, L.J., García, A., Corcho, O.: Social tags and linked data for ontology development: A case study in the financial domain. In: The 4th International Conference on Web Intelligence, Mining and Semantics, pp. 1–10. ACM (2014)

    Google Scholar 

  13. Griffiths, T.L., Steyvers, M., Tenenbaum, J.B.: Topics in semantic representation. Psychol. Rev. 114(2), 211 (2007)

    Article  Google Scholar 

  14. Heymann, P., Garcia-Molina, H.: Collaborative creation of communal hierarchical taxonomies in social tagging systems. Technical report, Stanford (2006)

    Google Scholar 

  15. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11762256_31

    Chapter  Google Scholar 

  16. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University (2003)

    Google Scholar 

  17. Isaac, A., Summers, E.: SKOS simple knowledge organization system primer. W3C Working Group Note. World Wide Web Consortium (W3C) (2009). https://www.w3.org/TR/skos-primer/. Accessed 10 July 2018

  18. Meo, P.D., Quattrone, G., Ursino, D.: Exploitation of semantic relationships and hierarchical data structures to support a user in his annotation and browsing activities in folksonomies. Inf. Syst. 34(6), 511–535 (2009)

    Article  Google Scholar 

  19. Mika, P.: Ontologies are us: a unified model of social networks and semantics. Web Semant.: Sci. Serv. Agents World Wide Web 5(1), 5–15 (2007)

    Article  Google Scholar 

  20. Niebler, T., Hahn, L., Hotho, A.: Learning word embeddings from tagging data: a methodological comparison. In: Lernen, Wissen, Daten, Analysen (LWDA) Conference Proceedings, pp. 229–240 (2017)

    Google Scholar 

  21. Osuna, E., Freund, R., Girosi, F.: Support vector machines: training and applications. Technical report, AI Memo 1602, Massachusetts Institute of Technology (1997)

    Google Scholar 

  22. Rêgo, A.S.C., Marinho, L.B., Pires, C.E.S.: A supervised learning approach to detect subsumption relations between tags in folksonomies. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing (SAC 2015), pp. 409–415. ACM (2015)

    Google Scholar 

  23. Steyvers, M., Griffiths, T.: Probabilistic topic models. Handb. Latent Semant. Anal. 427(7), 424–440 (2007)

    Google Scholar 

  24. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn. Addison-Wesley Longman Publishing Co. Inc., Boston (2005)

    Google Scholar 

  25. Tang, J., Leung, H.f., Luo, Q., Chen, D., Gong, J.: Towards ontology learning from folksonomies. In: Proceedings of the IJCAI, vol. 9, pp. 2089–2094 (2009)

    Google Scholar 

  26. Vander Wal, T.: Folksonomy (2007). http://vanderwal.net/folksonomy.html. Accessed 07 June 2018

  27. Veropoulos, K., Campbell, C., Cristianini, N., et al.: Controlling the sensitivity of support vector machines. In: Proceedings of the IJCAI, pp. 55–60 (1999)

    Google Scholar 

  28. Wang, W., Barnaghi, P.M., Bargiela, A.: Probabilistic topic models for learning terminological ontologies. IEEE Trans. Knowl. Data Eng. 22(7), 1028–1040 (2010)

    Article  Google Scholar 

  29. Wetzker, R., Zimmermann, C., Bauckhage, C.: Analyzing social bookmarking systems: A del.icio.us cookbook. In: Proceedings of the ECAI 2008 Mining Social Data Workshop, pp. 26–30 (2008)

    Google Scholar 

  30. Zhou, M., Bao, S., Wu, X., Yu, Y.: An unsupervised model for exploring hierarchical semantics from social annotations. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 680–693. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_49

    Chapter  Google Scholar 

Download references

Acknowledgment

This research is funded by the Research Development Fund at Xi’an Jiaotong-Liverpool University, contract number RDF-10-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, H., Wang, W., Coenen, F. (2018). Learning Relations from Social Tagging Data. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11012. Springer, Cham. https://doi.org/10.1007/978-3-319-97304-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97304-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97303-6

  • Online ISBN: 978-3-319-97304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics